
- •1. Сутність поняття “модель”. Особливості математичної моделі.
- •3. Особливості і принципи математичного моделювання. Узагальнена схема математичного моделювання.
- •4. Поняття економіко-математичної моделі. Узагальнена схема процесу математичного моделювання економічних процесів. Особливості процесу математичного моделювання економічних систем.
- •5. Особливості економічних спостережень і вимірів.
- •6. Охарактеризуйте основні етапи економіко-математичного моделювання.
- •7. Сутність адекватності економіко-математичних моделей. Перевірка адекватності моделі.
- •8. Основні засади щодо класифікації економіко-математичних моделей. Наведіть приклади та дайте відповідні пояснення.
- •9. Сутність аналітичного та комп’ютерного моделювання.
- •10. Роль прикладних економіко-математичних досліджень.
- •11. «Павутиноподібна» модель. Гіпотези, що приймаються в моделі.
- •12. Стійка рівновага у «павутиноподібній» моделі. Умови існування стійкої рівноваги у «павутиноподібній» моделі.
- •13. Постановка задачі економіко-математичного моделювання. Сутність понять: «параметри», «змінні», «цільова функція», «система обмежень», «оптимальний план».
- •14. Предмет математичного програмування. Приклади економічних задач математичного програмування.
- •15. Багатокритеріальна оптимізація економічних систем.
- •16. Классифікація задач математичного програмування.
- •17. Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування.
- •18. Форми запису задачі лінійного програмування, охарактеризувати їх. Навести відповідні формули.
- •19. Геометрична інтерпретація задач лінійного програмування. Властивості розв’язків задачі лінійного програмування.
- •Перехід від одного опорного плану до іншого
- •21. Алгоритм графічного методу розв’язування задач лінійного програмування.
- •23. 24. Умова оптимальності розв’язку задачі лінійного програмування симплекс-методом. Алгоритм симплексного методу. Навести відповідні формули.
- •25. Метод штучного базису. Ознака оптимальності плану із штучним базисом.
- •26. Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі. Навести відповідні формули.
- •27. Економічний зміст двоїстої задачі й двоїстих оцінок.
- •28. Теореми двоїстості, їх економічна інтерпретація.
- •29. Застосування теорем двоїстості в розв’язуванні задач лінійного програмування. Навести відповідні формули.
- •30. Цілочислове програмування. Приклади застосування цілочислових задач в плануванні й управлінні виробництвом. Навести відповідні формули.
- •31. Геометрична інтерпретація задачі цілочислового програмування.
- •32. Загальна характеристика методів розв’язування задач цілочислового програмування.
- •33. Сутність цілочислового програмування. Графічний метод розв’язування задач цілочислового програмування.
- •34. Методи відтинання. Метод Гоморі. Навести відповідні формули.
- •35. Комбінаторні методи. Метод гілок і меж. Навести відповідні формули.
- •36. Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- •38. Основні труднощі розв’язування задач нелінійного програмування.
- •39. Графічний метод розв’язування задач нелінійного програмування.
- •40.41. Метод множників Лагранжа пошуку умовного екстремуму функції. Визначення типу екстремуму. Навести відповідні формули.
- •42. Алгоритм розв’язування задачі на безумовний екстремум. Визначення типу екстремуму. Навести відповідні формули.
- •43. Поняття про опуклі функції
- •Опуклі й угнуті функції
- •44. Сідлова точка та необхідні умови її існування. Навести відповідні формули.
- •45. Градієнтні методи розв’язання задач нелінійного програмування. Метод Франка-Вульфа розв’язування задачі нелінійного програмування. Навести відповідні формули.
- •46. Постановка зад.Динам.Прогр. Та її геометрична інтерпретація
- •47.Принцип оптимальності та алгоритм динамічного програмування.
- •50.Основні поняття та завдання теорії ігор.
- •52.Геом.Інтерпретація гри 2х2
- •54. Зведення матричної гри до задачі лінійного програмування.
Перехід від одного опорного плану до іншого
Розглянемо, як, виходячи з початкового опорного плану (4.6), перейти до наступного опорного плану, що відповідає цілеспрямованому процесу перебору кутових точок багатогранника розв’язків.
Оскільки є базисом m-вимірного простору, то кожен з векторів співвідношення (4.5) може бути розкладений за цими векторами базису, причому у єдиний спосіб:
Розглянемо такий
розклад для довільного небазисного
вектора, наприклад, для
:
(4.7)
Припустимо, що у
виразі (4.7)
існує хоча б один додатний коефіцієнт
.
Введемо деяку поки
що невідому величину
,
помножимо на неї обидві частини рівності
(4.7) і
віднімемо результат з рівності (4.6).
Отримаємо:
(4.8)
Отже, вектор
є планом задачі у
тому разі, якщо його компоненти невід’ємні.
За допущенням
,
отже, ті компоненти вектора
,
в які входять
,
будуть невід’ємними, тому необхідно
розглядати лише ті компоненти, які
містять додатні
.
Тобто необхідно знайти таке значення
,
за якого для всіх
буде виконуватися умова невід’ємності
плану задачі:
(4.9)
З (4.9)
отримуємо, що для шуканого
має виконуватися умова
.
Отже, вектор
буде планом задачі для будь-якого ,
що задовольняє умову:
,
де мінімум знаходимо для тих i, для яких .
Опорний план не
може містити більше ніж m додатних
компонент, тому в плані
необхідно перетворити в нуль хоча б
одну з компонент. Допустимо, що
для деякого значення і, тоді відповідна
компонента плану
перетвориться в нуль. Нехай це буде
перша компонента плану, тобто:
.
Підставимо значення
у вираз (4.8):
,
якщо позначити
,
,
то рівняння можна подати у вигляді:
,
якому відповідає такий опорний план:
.
Для визначення
наступного опорного плану необхідно
аналогічно продовжити процес: будь-який
вектор, що не входить у базис, розкласти
за базисними векторами, а потім визначити
таке
,
для якого один з векторів виключається
з базису.
Отже, узагальнюючи розглянутий процес, можемо висновувати: визначення нових опорних планів полягає у виборі вектора, який слід ввести в базис, і вектора, який необхідно вивести з базису. Така процедура відповідає переходу від одного базису до іншого за допомогою методу Жордана-Гаусса.
Необхідно зазначити,
що для випадку, коли вектор
підлягає включенню в базис, а в його
розкладі (4.7)
всі
,
то, очевидно, не існує такого значення
,
яке виключало б один з векторів. У такому
разі план
містить m+1 додатних компонент, отже,
система векторів
буде лінійно залежною і визначає не
кутову точку багатогранника розв’язків.
Функціонал не може в ній набирати
максимального значення. Це означає, що
функціонал є необмеженим на багатограннику
розв’язків.
21. Алгоритм графічного методу розв’язування задач лінійного програмування.
Алгоритм графічного методу розв’язування задачі лінійного програмування складається з таких кроків:
1. Будуємо прямі, рівняння яких дістаємо заміною в обмеженнях задачі (3.16) знаків нерівностей на знаки рівностей.
2. Визначаємо півплощини, що відповідають кожному обмеженню задачі.
3. Знаходимо багатокутник розв’язків задачі лінійного програмування.
4. Будуємо
вектор
,
що задає напрям зростання значення
цільової функції задачі.
5. Будуємо
пряму с1х1+с2х2=const,
перпендикулярну до вектора
.
6.
Рухаючи
пряму с1х1+с2х2=const
в напрямку вектора
(для задачі максимізації) або в протилежному
напрямі (для задачі мінімізації),
знаходимо вершину багатокутника
розв’язків, де цільова функція набирає
екстремального значення.
7. Визначаємо координати точки, в якій цільова функція набирає максимального (мінімального) значення, і обчислюємо екстремальне значення цільової функції в цій точці.