
- •Билет 1
- •1)Закон Ома для цепи синусоидального тока.
- •2)Комплексная проводимость и операции с комплексными числами.
- •3)Электропроводность полупроводников.
- •Билет 2
- •1)Основы символического метода расчета цепей синусоидального тока
- •2)Законы Кирхгофа в символической форме записи.
- •3)Симметричный и несимметричный p-n-переходы.
- •Билет 3
- •1)Резистивный, индуктивный, емкостной элементы в цепи синусоидального тока)
- •1. Резистивный элемент (резистор)
- •2. Индуктивный элемент (катушка индуктивности)
- •3. Емкостный элемент (конденсатор)
- •2)Методы расчета электрических цепей синусоидального тока.)
- •3)Приложение прямого напряжения к переходу
- •Билет 4
- •1) Синусоидальный ток.
- •2) Векторные диаграммы при расчете электрической цепи синусоидального тока.
- •3) Приложение обратного напряжения к переходу.
- •Билет 5
- •1)Краткие выводы по методам расчета электрических цепей.
- •2) Мощность. Выражение мощности в комплексной форме записи.
- •3) Обратный ток реального р-п-перехода.
- •Билет 6
- •1)Метод эквивалентного генератора
- •2) Резонансный режим работы двухполюсника.
- •3) Пробой p-n-перехода
- •Билет 7
- •1)Методы узловых потенциалов
- •2 )Резонанс токов
- •3)Полупроводниковые диоды. Общие понятия
- •Билет 8
- •1)Метод двух узлов.
- •2)Резонанс напряжений
- •3)Выпрямительные диоды
- •Билет 9
- •1)Перенос источников эдс и источников тока.
- •2)Передача энергии от активного двухполюсника нагрузке.
- •3)Импульсный диод
- •Билет 10
- •2)Согласующий трансформа́тор — трансформатор, применяемый для согласования сопротивления различных частей (каскадов) электронных схем.
- •1)Преобразование звезды в треугольник и треугольника в звезду
- •2) Расчет электрических цепей при наличии магнитно-связанных катушек.
- •3)Туннельный и обращенный диоды
- •Билет 12
- •1) Теоремы взаимности и компенсации.
- •2) Резонанс в магнитно-связанных колебательных контурах.
- •3) Диоды Шотки.
- •Билет 13
- •1)Входные и взаимные проводимости ветвей. Входное сопротивление
- •2)Трехфазная система эдс.
- •3)Устройство и основные физические процессы биполярного транзистора.
- •Билет 14
- •1) Принцип наложения и метод наложения.
- •2) Основные схемы соединения трехфазных цепей.
- •3) Модель Эберса - Молла с двумя источниками тока, управляемыми токами.
- •Билет 15
- •1) Метод контурных токов.
- •2) Расчет трех фазных цепей. Общие рекомендации.
- •3) Модель Эберса - Молла с одним источником тока, управляемым током.
- •Билет 16
- •1) Метод пропорциональных величин.
- •2) Расчет трехфазных цепей при соединении звезда - звезда с нулевым проводом.
- •3) Эквивалентная схема транзистора для расчета схем с общим эмиттером.
- •Билет 17
- •2)Расчёт трёхфазных цепей при соединении нагрузки треугольником
- •3)Схема включения транзистора с общей базой
- •Билет 18
- •1)Закон ома для ветвей с источником эдс
- •2)Расчет трехфазных цепей при соединении звезда-звезда без нулевого провода
- •3)Схема включения транзистора с общим эмиттером
- •Билет 19
- •1)Дуальность элементов и цепей. Принцип дуальности
- •2)Мощность в трехфазных цепях
- •3)Схема включения транзистора с общим коллектором
- •Билет 20
- •1)Второй закон Кирхгофа
- •2)Круговое вращающееся магнитное поле
- •Билет 21
- •1)Первый закон Кирхгофа
- •2)Общие сведения о переходных процессах
- •3)Параметры и характеристики усилителей на транзисторах
- •Билет 22 (не полностью)
- •1) Основные понятия геометрии цепей.
- •1) Законы коммутации.
- •3) Начальный режим работы транзистора в схеме с общим эмиттером. Билет 23
- •1) Источник тока.
- •2) Независимые и зависимые начальные условия.
- •3) Схемы стабилизации транзистора (коллекторная, эмиттерная).
- •Билет 24 (не полностью)
- •2) Составление уравнений для свободных токов и напряжений.
- •Билет 25
- •1)Емкостной элемент и его характеристики
- •2)Алгебраизация системы уравнений для свободных токов
- •3)Усилители с эммитерной стабилизацией
- •Билет 26
- •1)Индуктивный элемент и его характерестики
- •2) Составление характеристического уравнения системы
- •3) Анализ усилителя с эмиттерной стабилизацией
- •Билет 27
- •2)Расчёт трёхфазных цепей при соединении нагрузки треугольником
- •3)Анализ усилителя на основе эквивалентной схемы для средних частот
- •Билет 28
- •1)Энергия и мощность.
- •2)Классический метод расчета переходных процессов в линейных цепях.
- •3)Статические характеристики и режимы работ транзисторного ключа.
- •Билет 29
- •1)Напряжение.
- •2)Расчет переходных процессов с применением преобразования Лапласа.
- •3)Динамический режим работы транзисторного ключа.
- •Билет 30
- •1) Ток в электрической цепи.
- •2) Расчет переходных процессов операторным методом.
- •3) Схемы транзисторных ключей.
Билет 5
1)Краткие выводы по методам расчета электрических цепей.
Метод контурных токов:
Метод контурных токов основан на отказе от прямого вычисления токов ветвей из уравнений Кирхгофа. В этом методе в качестве неизвестных вводятся новые промежуточные контурные токи. Поэтому закон токов Кирхгофа для контурных токов удовлетворяется автоматически и достаточно записать p – q + 1 уравнений на основании закона напряжений Кирхгофа. Физические токи являются суперпозицией контурных токов, протекающих по конкретной ветви или элементу цепи.
В общем случае уравнения Кирхгофа можно записывать двумя способами.
Первый
способ основан
на физическом принципе замены реальных
токов в обычном уравнении Кирхгофа на
суперпозицию из контурных токов. В этом
случае, падение напряжения на пассивном
элементе равно произведению комплексного
сопротивления на сумму контурных токов,
проходящих через данный элемент. Тогда
Второй
способ основан
на прямой записи уравнений Кирхгофа
для контура в каноническом виде. Им
обычно пользуются при наличии практики
в расчетах цепей. Система таких линейно
независимых уравнений с рангом n имеет
вид
Метод узловых потенциалов (напряжений)
Метод узловых напряжений основан на явном использовании закона токов Кирхгофа. В отличие от метода контурных токов основными неизвестными считают узловые потенциалы. В уравнениях записанных на основании закона токов Кирхгофа токи в ветвях определяются через потенциалы на концах ветвей.
Теоретические основы
Если в цепи, состоящей из У узлов и Р рёбер известны все характеристики звеньев (полные сопротивления R, величины источников ЭДС E и тока J), то возможно вычислить токи Ii во всех рёбрах и потенциалы φi во всех узлах. Поскольку электрический потенциал определён с точностью до произвольного постоянного слагаемого, то потенциал в одном из узлов (назовём его базовым узлом) можно принять равным нулю, а потенциалы в остальных узлах определять относительно базового узла. Таким образом, при расчёте цепи имеем У+Р–1 неизвестных переменных: У–1 узловых потенциалов и Р токов в рёбрах.
Не все из указанных переменных независимы. Например, исходя из закона Ома для участка цепи, токи в звеньях полностью определяются потенциалами в узлах:
Метод суперпозиции (наложения)
Физический смысл метода наложения основан на линейности пассивных элементов и внутренних сопротивлений активных элементов. Метод реализуется как для токов, так и для узловых потенциалов. В первом случае токи в ветвях или контурах рассчитывают как алгебраическую сумму токов, возникающих от каждого источника в отдельности. Во втором случае узловые напряжения любого узла находят алгебраическим сложением узловых напряжений, созданных на этом узле каждым источником.
Реализацию метода осуществляют последовательным расчетом токов или узловых напряжений с одним источником или с целой группой источников, имеющихся в цепи. Окончательный расчет завершают алгебраическим сложением полученных решений. Исключаемые в расчетах источники заменяют их внутренним сопротивлением.