
- •Билет 1
- •1)Закон Ома для цепи синусоидального тока.
- •2)Комплексная проводимость и операции с комплексными числами.
- •3)Электропроводность полупроводников.
- •Билет 2
- •1)Основы символического метода расчета цепей синусоидального тока
- •2)Законы Кирхгофа в символической форме записи.
- •3)Симметричный и несимметричный p-n-переходы.
- •Билет 3
- •1)Резистивный, индуктивный, емкостной элементы в цепи синусоидального тока)
- •1. Резистивный элемент (резистор)
- •2. Индуктивный элемент (катушка индуктивности)
- •3. Емкостный элемент (конденсатор)
- •2)Методы расчета электрических цепей синусоидального тока.)
- •3)Приложение прямого напряжения к переходу
- •Билет 4
- •1) Синусоидальный ток.
- •2) Векторные диаграммы при расчете электрической цепи синусоидального тока.
- •3) Приложение обратного напряжения к переходу.
- •Билет 5
- •1)Краткие выводы по методам расчета электрических цепей.
- •2) Мощность. Выражение мощности в комплексной форме записи.
- •3) Обратный ток реального р-п-перехода.
- •Билет 6
- •1)Метод эквивалентного генератора
- •2) Резонансный режим работы двухполюсника.
- •3) Пробой p-n-перехода
- •Билет 7
- •1)Методы узловых потенциалов
- •2 )Резонанс токов
- •3)Полупроводниковые диоды. Общие понятия
- •Билет 8
- •1)Метод двух узлов.
- •2)Резонанс напряжений
- •3)Выпрямительные диоды
- •Билет 9
- •1)Перенос источников эдс и источников тока.
- •2)Передача энергии от активного двухполюсника нагрузке.
- •3)Импульсный диод
- •Билет 10
- •2)Согласующий трансформа́тор — трансформатор, применяемый для согласования сопротивления различных частей (каскадов) электронных схем.
- •1)Преобразование звезды в треугольник и треугольника в звезду
- •2) Расчет электрических цепей при наличии магнитно-связанных катушек.
- •3)Туннельный и обращенный диоды
- •Билет 12
- •1) Теоремы взаимности и компенсации.
- •2) Резонанс в магнитно-связанных колебательных контурах.
- •3) Диоды Шотки.
- •Билет 13
- •1)Входные и взаимные проводимости ветвей. Входное сопротивление
- •2)Трехфазная система эдс.
- •3)Устройство и основные физические процессы биполярного транзистора.
- •Билет 14
- •1) Принцип наложения и метод наложения.
- •2) Основные схемы соединения трехфазных цепей.
- •3) Модель Эберса - Молла с двумя источниками тока, управляемыми токами.
- •Билет 15
- •1) Метод контурных токов.
- •2) Расчет трех фазных цепей. Общие рекомендации.
- •3) Модель Эберса - Молла с одним источником тока, управляемым током.
- •Билет 16
- •1) Метод пропорциональных величин.
- •2) Расчет трехфазных цепей при соединении звезда - звезда с нулевым проводом.
- •3) Эквивалентная схема транзистора для расчета схем с общим эмиттером.
- •Билет 17
- •2)Расчёт трёхфазных цепей при соединении нагрузки треугольником
- •3)Схема включения транзистора с общей базой
- •Билет 18
- •1)Закон ома для ветвей с источником эдс
- •2)Расчет трехфазных цепей при соединении звезда-звезда без нулевого провода
- •3)Схема включения транзистора с общим эмиттером
- •Билет 19
- •1)Дуальность элементов и цепей. Принцип дуальности
- •2)Мощность в трехфазных цепях
- •3)Схема включения транзистора с общим коллектором
- •Билет 20
- •1)Второй закон Кирхгофа
- •2)Круговое вращающееся магнитное поле
- •Билет 21
- •1)Первый закон Кирхгофа
- •2)Общие сведения о переходных процессах
- •3)Параметры и характеристики усилителей на транзисторах
- •Билет 22 (не полностью)
- •1) Основные понятия геометрии цепей.
- •1) Законы коммутации.
- •3) Начальный режим работы транзистора в схеме с общим эмиттером. Билет 23
- •1) Источник тока.
- •2) Независимые и зависимые начальные условия.
- •3) Схемы стабилизации транзистора (коллекторная, эмиттерная).
- •Билет 24 (не полностью)
- •2) Составление уравнений для свободных токов и напряжений.
- •Билет 25
- •1)Емкостной элемент и его характеристики
- •2)Алгебраизация системы уравнений для свободных токов
- •3)Усилители с эммитерной стабилизацией
- •Билет 26
- •1)Индуктивный элемент и его характерестики
- •2) Составление характеристического уравнения системы
- •3) Анализ усилителя с эмиттерной стабилизацией
- •Билет 27
- •2)Расчёт трёхфазных цепей при соединении нагрузки треугольником
- •3)Анализ усилителя на основе эквивалентной схемы для средних частот
- •Билет 28
- •1)Энергия и мощность.
- •2)Классический метод расчета переходных процессов в линейных цепях.
- •3)Статические характеристики и режимы работ транзисторного ключа.
- •Билет 29
- •1)Напряжение.
- •2)Расчет переходных процессов с применением преобразования Лапласа.
- •3)Динамический режим работы транзисторного ключа.
- •Билет 30
- •1) Ток в электрической цепи.
- •2) Расчет переходных процессов операторным методом.
- •3) Схемы транзисторных ключей.
Билет 4
1) Синусоидальный ток.
Синусоидально изменяющийся ток
Из всех возможных форм периодических токов наибольшее распространение получил синусоидальный ток. По сравнению с другими видами тока синусоидальный ток имеет то преимущество, что позволяет в общем случае наиболее экономично осуществлять производство, передачу, распределение и использование электрической энергии. Только при использовании синусоидального тока удается сохранить неизменными формы кривых напряжений и токов на всех участках сложной линейной цепи. Теория синусоидального тока является ключом к пониманию теории других цепей.
Изображение синусоидальных ЭДС, напряжений и токов на плоскости декартовых координат
Синусоидальные токи и напряжения можно изобразить графически, записать при помощи уравнений с тригонометрическими функциями, представить в виде векторов на декартовой плоскости или комплексными числами.
Приведенным на рис. 1, 2 графикам двух синусоидальных ЭДС е1 и е2 соответствуют уравнения:
.
Значения
аргументов синусоидальных
функций
и
называются фазами синусоид,
а значение фазы в начальный момент
времени (t=0):
и
- начальной
фазой (
).
Величину
,
характеризующую скорость изменения
фазового угла, называют угловой
частотой. Так
как фазовый угол синусоиды за время
одного периода Т изменяется
на
рад.,
то угловая частота есть
,
где f– частота.
При совместном рассмотрении двух синусоидальных величин одной частоты разность их фазовых углов, равную разности начальных фаз, называют углом сдвига фаз.
Для синусоидальных ЭДС е1 и е2 угол сдвига фаз:
.
2) Векторные диаграммы при расчете электрической цепи синусоидального тока.
На декартовой плоскости из начала координат проводят векторы, равные по модулю амплитудным значениям синусоидальных величин, и вращают эти векторы против часовой стрелки (в ТОЭ данное направление принято за положительное) с угловой частотой, равной w. Фазовый угол при вращении отсчитывается от положительной полуоси абсцисс. Проекции вращающихся векторов на ось ординат равны мгновенным значениям ЭДС е1 и е2 (рис. 3). Совокупность векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения и токи, называют векторными диаграммами.При построении векторных диаграмм векторы удобно располагать для начального момента времени (t=0), что вытекает из равенства угловых частот синусоидальных величин и эквивалентно тому, что система декартовых координат сама вращается против часовой стрелки со скоростью w. Таким образом, в этой системе координат векторы неподвижны (рис. 4). Векторные диаграммы нашли широкое применение при анализе цепей синусоидального тока. Их применение делает расчет цепи более наглядным и простым. Это упрощение заключается в том, что сложение и вычитание мгновенных значений величин можно заменить сложением и вычитанием соответствующих векторов.
|
Пусть,
например, в точке разветвления цепи
(рис. 5) общий ток
равен
сумме токов
и
двух
ветвей:
.
Каждый из этих токов синусоидален и может быть представлен уравнением
и
.
Результирующий ток также будет синусоидален:
.
Определение
амплитуды
и
начальной фазы
этого
тока путем соответствующих тригонометрических
преобразований получается довольно
громоздким и мало наглядным, особенно,
если суммируется большое число
синусоидальных величин. Значительно
проще это осуществляется с помощью
векторной диаграммы.
На
рис. 6 изображены начальные положения
векторов токов, проекции которых на ось
ординат дают мгновенные значения токов
для t=0. При
вращении этих векторов с одинаковой
угловой скоростью w их
взаимное расположение не меняется, и
угол сдвига фаз между ними остается
равным
.
Так как алгебраическая сумма проекций векторов на ось ординат равна мгновенному значению общего тока, вектор общего тока равен геометрической сумме векторов токов:
.
Построение
векторной диаграммы в масштабе позволяет
определить значения
и
из
диаграммы, после чего может быть записано
решение для мгновенного значения
путем
формального учета угловой частоты:
.