
- •Билет 1
- •1)Закон Ома для цепи синусоидального тока.
- •2)Комплексная проводимость и операции с комплексными числами.
- •3)Электропроводность полупроводников.
- •Билет 2
- •1)Основы символического метода расчета цепей синусоидального тока
- •2)Законы Кирхгофа в символической форме записи.
- •3)Симметричный и несимметричный p-n-переходы.
- •Билет 3
- •1)Резистивный, индуктивный, емкостной элементы в цепи синусоидального тока)
- •1. Резистивный элемент (резистор)
- •2. Индуктивный элемент (катушка индуктивности)
- •3. Емкостный элемент (конденсатор)
- •2)Методы расчета электрических цепей синусоидального тока.)
- •3)Приложение прямого напряжения к переходу
- •Билет 4
- •1) Синусоидальный ток.
- •2) Векторные диаграммы при расчете электрической цепи синусоидального тока.
- •3) Приложение обратного напряжения к переходу.
- •Билет 5
- •1)Краткие выводы по методам расчета электрических цепей.
- •2) Мощность. Выражение мощности в комплексной форме записи.
- •3) Обратный ток реального р-п-перехода.
- •Билет 6
- •1)Метод эквивалентного генератора
- •2) Резонансный режим работы двухполюсника.
- •3) Пробой p-n-перехода
- •Билет 7
- •1)Методы узловых потенциалов
- •2 )Резонанс токов
- •3)Полупроводниковые диоды. Общие понятия
- •Билет 8
- •1)Метод двух узлов.
- •2)Резонанс напряжений
- •3)Выпрямительные диоды
- •Билет 9
- •1)Перенос источников эдс и источников тока.
- •2)Передача энергии от активного двухполюсника нагрузке.
- •3)Импульсный диод
- •Билет 10
- •2)Согласующий трансформа́тор — трансформатор, применяемый для согласования сопротивления различных частей (каскадов) электронных схем.
- •1)Преобразование звезды в треугольник и треугольника в звезду
- •2) Расчет электрических цепей при наличии магнитно-связанных катушек.
- •3)Туннельный и обращенный диоды
- •Билет 12
- •1) Теоремы взаимности и компенсации.
- •2) Резонанс в магнитно-связанных колебательных контурах.
- •3) Диоды Шотки.
- •Билет 13
- •1)Входные и взаимные проводимости ветвей. Входное сопротивление
- •2)Трехфазная система эдс.
- •3)Устройство и основные физические процессы биполярного транзистора.
- •Билет 14
- •1) Принцип наложения и метод наложения.
- •2) Основные схемы соединения трехфазных цепей.
- •3) Модель Эберса - Молла с двумя источниками тока, управляемыми токами.
- •Билет 15
- •1) Метод контурных токов.
- •2) Расчет трех фазных цепей. Общие рекомендации.
- •3) Модель Эберса - Молла с одним источником тока, управляемым током.
- •Билет 16
- •1) Метод пропорциональных величин.
- •2) Расчет трехфазных цепей при соединении звезда - звезда с нулевым проводом.
- •3) Эквивалентная схема транзистора для расчета схем с общим эмиттером.
- •Билет 17
- •2)Расчёт трёхфазных цепей при соединении нагрузки треугольником
- •3)Схема включения транзистора с общей базой
- •Билет 18
- •1)Закон ома для ветвей с источником эдс
- •2)Расчет трехфазных цепей при соединении звезда-звезда без нулевого провода
- •3)Схема включения транзистора с общим эмиттером
- •Билет 19
- •1)Дуальность элементов и цепей. Принцип дуальности
- •2)Мощность в трехфазных цепях
- •3)Схема включения транзистора с общим коллектором
- •Билет 20
- •1)Второй закон Кирхгофа
- •2)Круговое вращающееся магнитное поле
- •Билет 21
- •1)Первый закон Кирхгофа
- •2)Общие сведения о переходных процессах
- •3)Параметры и характеристики усилителей на транзисторах
- •Билет 22 (не полностью)
- •1) Основные понятия геометрии цепей.
- •1) Законы коммутации.
- •3) Начальный режим работы транзистора в схеме с общим эмиттером. Билет 23
- •1) Источник тока.
- •2) Независимые и зависимые начальные условия.
- •3) Схемы стабилизации транзистора (коллекторная, эмиттерная).
- •Билет 24 (не полностью)
- •2) Составление уравнений для свободных токов и напряжений.
- •Билет 25
- •1)Емкостной элемент и его характеристики
- •2)Алгебраизация системы уравнений для свободных токов
- •3)Усилители с эммитерной стабилизацией
- •Билет 26
- •1)Индуктивный элемент и его характерестики
- •2) Составление характеристического уравнения системы
- •3) Анализ усилителя с эмиттерной стабилизацией
- •Билет 27
- •2)Расчёт трёхфазных цепей при соединении нагрузки треугольником
- •3)Анализ усилителя на основе эквивалентной схемы для средних частот
- •Билет 28
- •1)Энергия и мощность.
- •2)Классический метод расчета переходных процессов в линейных цепях.
- •3)Статические характеристики и режимы работ транзисторного ключа.
- •Билет 29
- •1)Напряжение.
- •2)Расчет переходных процессов с применением преобразования Лапласа.
- •3)Динамический режим работы транзисторного ключа.
- •Билет 30
- •1) Ток в электрической цепи.
- •2) Расчет переходных процессов операторным методом.
- •3) Схемы транзисторных ключей.
Билет 24 (не полностью)
1) Источник напряжения - называется идеальный двухполюсник, напряжение которого является заданная функция временем и независимо от протекания через него тока.
Источник ЭДС (идеальный источник напряжения) — двухполюсник, напряжение на зажимах которого постоянно (не зависит от тока в цепи). Напряжение может быть задано как константа, как функция времени, либо как внешнее управляющее воздействие.
Идеальный источник напряжения (источник ЭДС) является физической абстракцией, то есть подобное устройство не может существовать. Если допустить существование такого устройства, то ток I, протекающий через него, стремился бы к бесконечности при подключении нагрузки, сопротивление RH которой стремится к нулю. Но при этом получается, что мощность источника ЭДС также стремится к бесконечности, так как P = EI. Но это невозможно, по той причине, что мощность любого источника энергии конечна.
Где
—
падение напряжения на внутреннем
сопротивлении;
—
падение напряжения на нагрузке.При
коротком замыкании (
)
,
т. е. вся мощность источника энергии
рассеивается на его внутреннем
сопротивлении. В этом случае ток
будет
максимальным для данного источника
ЭДС. Зная напряжение холостого хода и
ток короткого замыкания, можно вычислить
внутреннее сопротивление источника
напряжения:
2) Составление уравнений для свободных токов и напряжений.
3)Биполярный транзистор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают npn и pnp транзисторы (n(negative) — электронный тип примесной проводимости, p (positive) — дырочный). В биполярном транзисторе, в отличие от других разновидностей, основными носителями являются и электроны, и дырки (от слова «би» — «два»). Схематическое устройство транзистора показано на втором рисунке.
Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же главное отличие коллектора — бо́льшая площадь p — n-перехода. Кроме того, для работы транзистора абсолютно необходима малая толщина базы.
Большинство усилителей мощности класса «А» работают в однотактном режиме. При этом постоянное напряжение смещения транзистора составляет половину запирающего, а амплитуда сигнала меньше напряжения смещения. Этим обусловлен недостаток усилителей класса "А" - маленькая выходная мощность. В результате такой работы транзисторов, постоянная составляющая протекающего тока, чуть больше амплитуды переменной составляющей, поэтому транзистор всегда открыт и находится в проводящем состоянии. Если на входе сигнала нет, то постоянный ток постоянно протекает и отдаёт большую часть энергии на нагрев (низкий КПД до 20%). Основное преимущество класса "А" - то, что рабочая область транзистора находится на линейном участке вольт - амперной характеристики и искажения усиливаемого сигнала минимальны.
Усилители работающие в двухтактном режиме класса "А" малопригодны для высококачественного звуковоспроизведения сложного сигнала, так как постоянно протекающий повышенный постоянный ток, способствует дополнительному увеличению несимметричности правой и левой полуволны сигнала, это добавляет фазовые искажения и звук теряет разборчивость. Такой характер звука некоторые малоопытные слушатели воспринимают как "ламповую мягкость". К тому же, нагрев двух мощных (комплементарных) звукопроводящих транзисторов увеличивает (в два раза) тепловые -гармонические искажения на низких и инфранизких частотах, что приводит к образованию паразитной частотной модуляции. Отметим, что на сложном сигнале уровень частотной модуляции 0,05% здорово заметен на слух, поэтому класс "А", это не панацея от всех болезней. Но, паразитная частотная модуляция имеет место в других классах и сильно проявляется при повышенной динамической активности звукового сигнала. Поэтому нагрев мощных транзисторов зависит от активности и громкости усиливаемого звукового сигнала, в результате мощный транзистор хаотично, то нагревается, то остывает. Надо признать, что скоростные качества одного и того же транзистора с разной температурой кристалла неодинаковые, а мощных комплементарных пар много более. Комплементарные транзисторы (в классе "А" и "В") имеют разный наклон характеристики передачи, что вызывает устойчивые кроссоверные искажения в этих классах.
В режиме класса «В» амплитуда звукового сигнала меньше или равна напряжению смещения, а напряжение смещения = напряжению запирания транзистора. В этом случае транзистор открывается только во время прихода положительной полуволны сигнала. Такие усилители мощности работают в двухтактном режиме и каждая полуволна сигнала поочерёдно (в режиме отсечки) проходит через свой тип транзистора. Поэтому, наличие "мёртвой" зоны при переходе через ноль приводит к искажениям типа "ступенька". Но, в отличие от класса «А» транзисторы заперты и постоянный ток не течёт если нет сигнала. КПД усилителей мощности этого класса максимум 75%. Недостаток данной схемы, это переходные искажения второго порядка, которые возникают в транзисторах разной проводимости и обусловлены различиями индивидуальных частотно - временных свойств NpN и PnP транзисторов.
Класс «АВ» - частичное объединение двух классов «А» и «В». При этом напряжение запирания транзистора меньше половины напряжения смещения, но амплитуда проходного сигнала не превышает напряжение смещения. В этом случае отрицательная полуволна сигнала частично искажается, а положительная проводится полностью. Но, общие искажение сигнала меньше чем в схеме класса «В» и протекающий ток меньше чем в классе «А». КПД таких усилителей в два раза выше, по сравнению с схемой класса "А" и составляет 50 - 70%. Основное достоинство класса "АВ" - это возможность выбора оптимального соотношения между величиной искажений и КПД, c помощью изменения напряжения смещения в определённых пределах. Отметим, что 99% всей выпускаемой аудио аппаратуры работает в этом классе.
К экономичной категории класса "АВ" относятся усилители с динамическим смещением, которые имеют зависимость от уровня сигнала - SuperClass A, Non-switchingamp, NewClass A и.т.п. Такие усилители мощности ближе расположены кклассу "В" и имеют основные недостатки этого класса. Однако, спектр нелинейных искажений этих усилителей сужается до 5 гармоники (что есть хорошо) и уменьшается при малых уровнях сигнала, но реально превзойти класс "А" (по качеству звукопередачи) нет возможностей.
Класс «С» - это работа транзисторов при маленькой амплитуде напряжения запирания ниже, чем напряжение смещения. В этом случае амплитуда звукового сигнала меньше, чем напряжение смещения. В таком состоянии транзистор проводит только верхнюю часть положительной полуволны, что сильно искажает сигнал. Поэтому в аудио усилителях, этот класс не применяется. Такой режим работы транзисторов имеет высокий КПД (около 85%).
Класс "D" - это усилители сигнала с широтно - импульсной модуляцией (ШИМ).
Для того, чтобы усилитель мощности перевести в класс "D" необходимо создать ключевой режим работы выходных транзисторов - замыкать и размыкать их. Для этого, на базу (затвор) транзистора подается ШИМ-сигнал обработанный периодической последовательностью прямоугольных импульсов (прямоугольный сигнал). Этот прямоугольный сигнал проходя через транзистор, отпирает и запирает его. В результате импульсного процесса (на короткое время) создаётся рабочая точка выходных транзисторов. Поэтому ток через транзисторы не потечёт если нет сигнала, это вызывает искажения звука свойственные классу "В". Известно, что многозадачные электронные процессы и скорость переключения транзисторов не проходят мнгновенно, это изменяет форму сигнала и увеличивает длину пути его прохождения. К тому же,интермодуляционные искажения звука в усилителях ШИМ имеют прямую зависимость, от частоты модуляции к частоте усиливаемого сигнала, что ограничивает их использование в звуковом диапазоне.
Класс “D” имеет одно неоспоримое преимущество высокий КПД 90%.
Усилитель для сабвуфера - вот реальное применение класса "D" в аудио.
ШИМ-сигнал применяется для записи формата аудиодисков – SACD. Но на практике всплывают существенные недоработки этого нового формата.