
- •Билет 1
- •1)Закон Ома для цепи синусоидального тока.
- •2)Комплексная проводимость и операции с комплексными числами.
- •3)Электропроводность полупроводников.
- •Билет 2
- •1)Основы символического метода расчета цепей синусоидального тока
- •2)Законы Кирхгофа в символической форме записи.
- •3)Симметричный и несимметричный p-n-переходы.
- •Билет 3
- •1)Резистивный, индуктивный, емкостной элементы в цепи синусоидального тока)
- •1. Резистивный элемент (резистор)
- •2. Индуктивный элемент (катушка индуктивности)
- •3. Емкостный элемент (конденсатор)
- •2)Методы расчета электрических цепей синусоидального тока.)
- •3)Приложение прямого напряжения к переходу
- •Билет 4
- •1) Синусоидальный ток.
- •2) Векторные диаграммы при расчете электрической цепи синусоидального тока.
- •3) Приложение обратного напряжения к переходу.
- •Билет 5
- •1)Краткие выводы по методам расчета электрических цепей.
- •2) Мощность. Выражение мощности в комплексной форме записи.
- •3) Обратный ток реального р-п-перехода.
- •Билет 6
- •1)Метод эквивалентного генератора
- •2) Резонансный режим работы двухполюсника.
- •3) Пробой p-n-перехода
- •Билет 7
- •1)Методы узловых потенциалов
- •2 )Резонанс токов
- •3)Полупроводниковые диоды. Общие понятия
- •Билет 8
- •1)Метод двух узлов.
- •2)Резонанс напряжений
- •3)Выпрямительные диоды
- •Билет 9
- •1)Перенос источников эдс и источников тока.
- •2)Передача энергии от активного двухполюсника нагрузке.
- •3)Импульсный диод
- •Билет 10
- •2)Согласующий трансформа́тор — трансформатор, применяемый для согласования сопротивления различных частей (каскадов) электронных схем.
- •1)Преобразование звезды в треугольник и треугольника в звезду
- •2) Расчет электрических цепей при наличии магнитно-связанных катушек.
- •3)Туннельный и обращенный диоды
- •Билет 12
- •1) Теоремы взаимности и компенсации.
- •2) Резонанс в магнитно-связанных колебательных контурах.
- •3) Диоды Шотки.
- •Билет 13
- •1)Входные и взаимные проводимости ветвей. Входное сопротивление
- •2)Трехфазная система эдс.
- •3)Устройство и основные физические процессы биполярного транзистора.
- •Билет 14
- •1) Принцип наложения и метод наложения.
- •2) Основные схемы соединения трехфазных цепей.
- •3) Модель Эберса - Молла с двумя источниками тока, управляемыми токами.
- •Билет 15
- •1) Метод контурных токов.
- •2) Расчет трех фазных цепей. Общие рекомендации.
- •3) Модель Эберса - Молла с одним источником тока, управляемым током.
- •Билет 16
- •1) Метод пропорциональных величин.
- •2) Расчет трехфазных цепей при соединении звезда - звезда с нулевым проводом.
- •3) Эквивалентная схема транзистора для расчета схем с общим эмиттером.
- •Билет 17
- •2)Расчёт трёхфазных цепей при соединении нагрузки треугольником
- •3)Схема включения транзистора с общей базой
- •Билет 18
- •1)Закон ома для ветвей с источником эдс
- •2)Расчет трехфазных цепей при соединении звезда-звезда без нулевого провода
- •3)Схема включения транзистора с общим эмиттером
- •Билет 19
- •1)Дуальность элементов и цепей. Принцип дуальности
- •2)Мощность в трехфазных цепях
- •3)Схема включения транзистора с общим коллектором
- •Билет 20
- •1)Второй закон Кирхгофа
- •2)Круговое вращающееся магнитное поле
- •Билет 21
- •1)Первый закон Кирхгофа
- •2)Общие сведения о переходных процессах
- •3)Параметры и характеристики усилителей на транзисторах
- •Билет 22 (не полностью)
- •1) Основные понятия геометрии цепей.
- •1) Законы коммутации.
- •3) Начальный режим работы транзистора в схеме с общим эмиттером. Билет 23
- •1) Источник тока.
- •2) Независимые и зависимые начальные условия.
- •3) Схемы стабилизации транзистора (коллекторная, эмиттерная).
- •Билет 24 (не полностью)
- •2) Составление уравнений для свободных токов и напряжений.
- •Билет 25
- •1)Емкостной элемент и его характеристики
- •2)Алгебраизация системы уравнений для свободных токов
- •3)Усилители с эммитерной стабилизацией
- •Билет 26
- •1)Индуктивный элемент и его характерестики
- •2) Составление характеристического уравнения системы
- •3) Анализ усилителя с эмиттерной стабилизацией
- •Билет 27
- •2)Расчёт трёхфазных цепей при соединении нагрузки треугольником
- •3)Анализ усилителя на основе эквивалентной схемы для средних частот
- •Билет 28
- •1)Энергия и мощность.
- •2)Классический метод расчета переходных процессов в линейных цепях.
- •3)Статические характеристики и режимы работ транзисторного ключа.
- •Билет 29
- •1)Напряжение.
- •2)Расчет переходных процессов с применением преобразования Лапласа.
- •3)Динамический режим работы транзисторного ключа.
- •Билет 30
- •1) Ток в электрической цепи.
- •2) Расчет переходных процессов операторным методом.
- •3) Схемы транзисторных ключей.
Билет 6
1)Метод эквивалентного генератора
Метод эквивалентного генератора, основанный на теореме об активном двухполюснике, позволяет достаточно просто определить ток в одной ветви сложной линейной схемы, не находя токи в остальных ветвях. Теорема об активном двухполюснике формулируется следующим образом: если активную цепь, к которой присоединена некоторая ветвь, заменить источником с ЭДС, равной напряжению на зажимах разомкнутой ветви, и сопротивлением, равным входному сопротивлению активной цепи, то ток в этой ветви не изменится.
При теоретическом определении параметров эквивалентного генератора их расчет осуществляется в два этапа:
1. Любым из известных методов расчета линейных электрических цепей определяют напряжение на зажимах a-b активного двухполюсника при разомкнутой исследуемой ветви.
2. При разомкнутой исследуемой ветви определяется входное сопротивление активного двухполюсника, заменяемого при этом пассивным. Данная замена осуществляется путем устранения из структуры активного двухполюсника всех источников энергии, но при сохранении на их месте их собственных (внутренних) сопротивлений. В случае идеальных источников это соответствует закорачиванию всех источников ЭДС и размыканию всех ветвей с источниками тока.
Сказанное иллюстрируют схемы на рис. 3, где для расчета входного (эквивалентного) сопротивления активного двухполюсника на рис. 3,а последний преобразован в пассивный двухполюсник со структурой на рис. 3,б. Тогда согласно схеме на рис. 3,б
2) Резонансный режим работы двухполюсника.
Пусть двухполюсник содержит один или несколько индуктивных элементов и один или несколько конденсаторов. под резонансным режимом (режимами) работы такого двухполюсника понимают режим (режимы), при котором входное сопротивление двухполюсника является чисто активным. По отношению к внешней цепи двухполюсник в резонансном режиме ведет себя как активное сопротивление, поэтому ток и напряжение на его входе совпадают по фазе. реактивная мощность двухполюсника при этом равна нулю. Различают две основные разновидности резонансных режимов: резонанс токов и резонанс напряжений.
3) Пробой p-n-перехода
Пробоем называют резкое изменение режима работы p-n-перехода, находящегося под большим обратным напряжением. ВАХ (Вольт-амперная характеристика) для больших значений обратных напряжений показана на рис. 1.5
Рис. 1.5
Началу пробоя соответствует точка А. После этой точки дифференциальное сопротивление перехода стремится к нулю.
Различают три вида пробоя p-n-перехода:
Туннельный пробой (А-Б),
Лавинный пробой (Б-В),
Тепловой пробой (за т.В).
Туннельный пробой возникает при малой ширине p-n-перехода (например, при низкоомной базе), когда при большом обратном напряжении электроны проникают за барьер без преодоления самого барьера. В результате туннельного пробоя ток через переход резко возрастает и обратная ветвь ВАХ идет перпендикулярно оси напряжений вниз.
Лавинный пробой возникает в том случае, если при движении до очередного соударения с нейтральным атомом кристалла электрон или дырка приобретают энергию, достаточную для ионизации этого атома, при этом рождаются новые пары электрон-дырка, происходит лавинообразное размножение носителей зарядов; здесь основную роль играют неосновные носители, они приобретают большую скорость. Лавинный пробой имеет место в переходах с большими удельными сопротивлениями базы («высокоомная база»), т.е. в p-n-переходе с широким переходом.
Тепловой пробой характеризуется сильным увеличением тока в области p-n-перехода в результате недостаточного теплоотвода.
Если туннельный и лавинный пробои, называемые электрическими, обратимы, то после теплового пробоя свойства перехода меняются вплоть до разрушения перехода.
Напряжения и токи в p-n-переходах зависят от параметров перехода и его температуры.