
- •1. Цели дисциплины «Сопротивление материалов»
- •7. Растяжение и сжатие. Общие понятия.
- •8. Напряжения и перемещения. Закон Гука
- •9. Механические характеристики и свойства материалов
- •10. Допускаемые напряжения и запасы прочности
- •Запас прочности.
- •Коэффициент запаса.
- •11. Расчеты на прочность и жесткость статически определимых и статически неопределимых систем
- •12. Влияние собственного веса при растяжении и сжатии
- •13. Напряженное состояние при растяжении и сжатии
- •14. Напряжения в наклонных площадках при плоском и объемном напряженных состояниях. Обобщенный закон Гука
- •Частные случаи плоского напряженного состояния
- •Обобщенный закон Гука
- •15. Изгиб прямолинейного бруса. Общие понятия.
- •Построение эпюр поперечной силы и изгибающего момента
- •16. Типы опор и определение опорных реакций
- •17. Поперечная сила и изгибающий момент
- •18. Геометрические характеристики плоских сечений Общие сведения
- •Прямоугольник
- •Треугольник
- •19. Напряжения при изгибе. Расчеты на прочность
- •20. Определение перемещений при изгибе. Расчет на жесткость.
- •21. Кручение. Чистый сдвиг и его особенности
- •22. Кручение стержня круглого поперечного сечения
- •23. Расчеты на прочность и жесткость при кручении.
- •24. Напряженное состояние и разрушение при кручении.
- •Построение эпюр крутящих моментов
- •Рациональная форма сечения вала
- •Деформации при кручении и условие жесткости
- •25. Сложное сопротивление. Общие понятия.
- •Косой изгиб призматического стержня Совместное действие изгиба и растяжения или сжатия Внецентренное сжатие или растяжение.
- •26. Теории прочности.
- •Критерии разрушения
- •Гипотеза наибольших линейных деформаций (II теория прочности, Мариотт, 1682 г.)
- •Критерии пластичности
- •Гипотеза наибольших касательных напряжений (III теория прочности; Кулон, 1773 год)
- •Теория наибольшей удельной потенциальной энергии формоизменения (IV теория прочности; Бельтрами - 1885 г.; Губер - 1904 г.)
- •Теория прочности Мора (V теория прочности)
- •Замечания о выборе теории прочности
- •27. Кручение с изгибом.
- •28. Косой изгиб.
- •29. Внецентренное растяжение-сжатие.
- •30. Устойчивость сжатых стержней (продольный изгиб). Основные понятия.
- •31. Формула Эйлера – вывод, предел применимости.
- •32. Эмпирические формулы для определения критических напряжений. Проверка сжатых стержней на устойчивость.
- •33. Понятие о динамических нагрузках. Удар. Основные понятия.
- •34. Горизонтальный удар.
- •35. Вертикальный удар. Удар от внезапной остановки движения.
- •36. Колебания систем с одной степенью свободы.
10. Допускаемые напряжения и запасы прочности
Допускаемое (допустимое) напряжение – это значение напряжения, которое считается предельно приемлемым при вычислении размеров поперечного сечения элемента, рассчитываемого на заданную нагрузку. Можно говорить о допускаемых напряжениях растяжения, сжатия и сдвига. Допускаемые напряжения либо предписываются компетентной инстанцией (скажем, отделом мостов управления железной дороги), либо выбираются конструктором, хорошо знающим свойства материала и условия его применения. Допускаемым напряжением ограничивается максимальное рабочее напряжение конструкции.
При проектировании конструкций ставится цель создать конструкцию, которая, будучи надежной, в то же время была бы предельно легкой и экономной. Надежность обеспечивается тем, что каждому элементу придают такие размеры, при которых максимальное рабочее напряжение в нем будет в определенной степени меньше напряжения, вызывающего потерю прочности этим элементом. Потеря прочности не обязательно означает разрушение. Машина или строительная конструкция считается отказавшей, когда она не может удовлетворительно выполнять свою функцию. Деталь из пластичного материала, как правило, теряет прочность, когда напряжение в ней достигает предела текучести, так как при этом из-за слишком большой деформации детали машина или конструкция перестает соответствовать своему назначению. Если же деталь выполнена из хрупкого материала, то она почти не деформируется, и потеря ею прочности совпадает с ее разрушением.
Запас прочности.
Разность напряжения, при котором материал теряет прочность, и допускаемого напряжения есть тот «запас прочности», который необходимо предусматривать, учитывая возможность случайной перегрузки, неточностей расчета, связанных с упрощающими предположениями и неопределенными условиями, наличия не обнаруженных (или не обнаружимых) дефектов материала и последующего снижения прочности из-за коррозии металла, гниения дерева и пр.
Коэффициент запаса.
Коэффициент запаса прочности какого-либо элемента конструкции равен отношению предельной нагрузки, вызывающей потерю прочности элемента, к нагрузке, создающей допускаемое напряжение. При этом под потерей прочности понимается не только разрушение элемента, но и появление в нем остаточных деформаций. Поэтому для элемента конструкции, выполненного из пластичного материала, предельным напряжением является предел текучести. В большинстве случаев рабочие напряжения в элементах конструкции пропорциональны нагрузкам, а поэтому коэффициент запаса определяется как отношение предела прочности к допускаемому напряжению (коэффициент запаса по пределу прочности). Так, если предел прочности конструкционной стали равен 540 МПа, а допускаемое напряжение – 180 МПа, то коэффициент запаса равен
11. Расчеты на прочность и жесткость статически определимых и статически неопределимых систем
Если при рассмотрении заданной системы, находящейся в равновесном состоянии от действия заданных внешних нагрузок, все реакции в связях закрепления, а также внутренние усилия в ее элементах, можно определить только по методу сечений, без использования дополнительных условий, то такая система называется статически определимой.
В реальной практике встречаются такие конструкции при расчете которых одних лишь уравнений равновесия оказывается недостаточно, в связи с чем требуется формулирование дополнительных уравнений, связанных с условиями деформирования конструкции.
Системы, в которых количество наложенных связей больше, нежели число независимых уравнений равновесия, называются статически неопределимыми.
По сравнению со статически определимыми системами, в статически неопределимых системах имеются дополнительные связи, которые называются лишними.
Термин “лишние связи” является условным. Эти связи являются лишними с точки зрения расчетных предпосылок. В действительности эти связи создают дополнительные резервы для конструкций, как в плане обеспечения её жесткости, так и прочности.
На рис. 2.5, а изображен кронштейн, состоящий из двух стержней, шарнирно скрепленных между собой. В связи с тем, что на конструкцию действует лишь вертикальное усилие Р, а система является плоской (т.е. все элементы конструкции и вектор внешних сил лежат в одной плоскости), получается, что усилия в стержнях легко определяются из условий равновесия узла А, т.е.
x = 0, y = 0. (2.16)
Раскрывая эти уравнения, получаем замкнутую систему линейных уравнений относительно неизвестных усилий N1 и N2 в которой количество уравнений равно количеству неизвестных:
N1 N2 sin = 0; N2 cos Р = 0.
Рис. 2.5
Если конструкцию кронштейна усложнить, добавив еще один стержень (рис. 2.5, б), то усилия в стержнях N1, N2 и N3 прежним способом определить уже не удастся, т.к. при тех же двух уравнениях равновесия (2.16) имеются уже три неизвестных усилия в стержнях. В таких случаях говорят, что система один раз статически неопределима. Разность между числом неизвестных усилий и количеством независимых (значащих) уравнений равновесия, связывающих эти усилия, называется степенью статической неопределимости рассматриваемой системы.
В общем случае под nраз статически неопределимой системой понимается система, в которой число неизвестных внешних опорных реакций и внутренних усилий превышает число независимых и значащих уравнений равновесия на n единиц.