
- •1. Цели дисциплины «Сопротивление материалов»
- •7. Растяжение и сжатие. Общие понятия.
- •8. Напряжения и перемещения. Закон Гука
- •9. Механические характеристики и свойства материалов
- •10. Допускаемые напряжения и запасы прочности
- •Запас прочности.
- •Коэффициент запаса.
- •11. Расчеты на прочность и жесткость статически определимых и статически неопределимых систем
- •12. Влияние собственного веса при растяжении и сжатии
- •13. Напряженное состояние при растяжении и сжатии
- •14. Напряжения в наклонных площадках при плоском и объемном напряженных состояниях. Обобщенный закон Гука
- •Частные случаи плоского напряженного состояния
- •Обобщенный закон Гука
- •15. Изгиб прямолинейного бруса. Общие понятия.
- •Построение эпюр поперечной силы и изгибающего момента
- •16. Типы опор и определение опорных реакций
- •17. Поперечная сила и изгибающий момент
- •18. Геометрические характеристики плоских сечений Общие сведения
- •Прямоугольник
- •Треугольник
- •19. Напряжения при изгибе. Расчеты на прочность
- •20. Определение перемещений при изгибе. Расчет на жесткость.
- •21. Кручение. Чистый сдвиг и его особенности
- •22. Кручение стержня круглого поперечного сечения
- •23. Расчеты на прочность и жесткость при кручении.
- •24. Напряженное состояние и разрушение при кручении.
- •Построение эпюр крутящих моментов
- •Рациональная форма сечения вала
- •Деформации при кручении и условие жесткости
- •25. Сложное сопротивление. Общие понятия.
- •Косой изгиб призматического стержня Совместное действие изгиба и растяжения или сжатия Внецентренное сжатие или растяжение.
- •26. Теории прочности.
- •Критерии разрушения
- •Гипотеза наибольших линейных деформаций (II теория прочности, Мариотт, 1682 г.)
- •Критерии пластичности
- •Гипотеза наибольших касательных напряжений (III теория прочности; Кулон, 1773 год)
- •Теория наибольшей удельной потенциальной энергии формоизменения (IV теория прочности; Бельтрами - 1885 г.; Губер - 1904 г.)
- •Теория прочности Мора (V теория прочности)
- •Замечания о выборе теории прочности
- •27. Кручение с изгибом.
- •28. Косой изгиб.
- •29. Внецентренное растяжение-сжатие.
- •30. Устойчивость сжатых стержней (продольный изгиб). Основные понятия.
- •31. Формула Эйлера – вывод, предел применимости.
- •32. Эмпирические формулы для определения критических напряжений. Проверка сжатых стержней на устойчивость.
- •33. Понятие о динамических нагрузках. Удар. Основные понятия.
- •34. Горизонтальный удар.
- •35. Вертикальный удар. Удар от внезапной остановки движения.
- •36. Колебания систем с одной степенью свободы.
Какую работу нужно написать?
28. Косой изгиб.
Под косым изгибом понимается такой случай изгиба, при котором плоскость изгибающего момента не совпадает ни с одной из главных осей поперечного сечения (рис. 5.27, а). Косой изгиб удобнее всего рассмотреть как одновременный изгиб бруса относительно главных осей x и y поперечного сечения бруса. Для этого общий вектор изгибающего момента М, действующего в поперечном сечении бруса, раскладывается на составляющие момента относительно этих осей (рис. 5.27, б):
Mx = Msin; My = Mcos . (5.25)
Введем следующее правило знаков для моментов Mx и My момент считается положительным, если в первой четверти координатной плоскости (там, где координаты x и y обе положительны) он вызывает сжимающие напряжения.
|
Рис. 5.27
На основании принципа независимости действия сил нормальное напряжение в произвольной точке, принадлежащей к поперечному сечению бруса и имеющей координаты x, y, определяется суммой напряжений, обусловленных моментами Mx и My , т.е.
.
(5.26)
Подставляя выражения Mx и My из (5.25) в (5.26), получим:
.
Из курса аналитической геометрии известно, что последнее выражение представляет собой уравнение плоскости. Следовательно, если в каждой точке сечения отложить по нормали вектор напряжения , то концы векторов образуют геометрическое место точек, принадлежащих одной плоскости, как и при поперечном изгибе.
Уравнение нейтральной линии, т.е. геометрического места точек, где нормальное напряжение принимает нулевые значения, найдем, полагая в (5.26) = 0:
.
Откуда определяется:
.
(5.27)
Поскольку свободный член в (5.27) равен нулю нейтральная линия всегда проходит через начало координат. Как видно из выражения (5.26), эпюра напряжений в поперечных сечениях бруса линейна, следовательно, максимальные напряжения в сечении возникают в точках наиболее удаленных от нейтральной линии. В том случае, когда сечение имеет простую форму (прямоугольник, круг), положение наиболее опасных точек легко определяется визуально. Для сечений, имеющих сложную форму, необходимо применить графический подход.
Далее покажем, что при косом изгибе нейтральная линия не перпендикулярна к плоскости действия изгибающего момента, как это всегда выполнялось при поперечном изгибе. Действительно угловой коэффициент K1 следа момента (рис. 5.27, б) равен:
K1 = tg . (5.28)
Угловой же коэффициент нейтральной линии, как это следует из (5.27), определяется выражением:
tg = K2
.
(5.29)
Так
как в общем случае Ix Iy, то
условие перпендикулярности прямых,
известное из аналитической геометрии,
не соблюдается, поскольку K1
.
Брус, образно выражаясь, предпочитает
изгибаться не в плоскости изгибающего
момента, а в некоторой другой плоскости,
где жесткость на изгиб будет минимальной.
Косым изгибом называется сопротивление прямого стержня действию поперечных нагрузок, проходящих через центры изгиба сечений, но не располагающихся только в одной главной плоскости инерции стержня. сечения понимается точка, обладающая следующим свойством: поперечная нагрузка, проходящая через центр изгиба, не вызывает закручивания стержня. В том случае, когда сечение имеет ось симметрии, центр изгиба лежит на этой оси. При наличии двух и более осей симметрии центр изгиба совпадает с центром тяжести сечения. В дальнейшем будем полагать, что сечение либо имеет две оси симметрии, либо разница в положениях центра изгиба и центра тяжести сечения несущественна и ею можно пренебречь (что справедливо для так называемых «массивных» (не тонкостенных) стержней). Таким образом, в принятой далее постановке считается, что поперечные нагрузки проходят через центры тяжести сечений, но не располагаются только в одной главной центральной плоскости инерции. Если все силы располагаются в одной центральной (но не главной) плоскости инерции сечения, косой изгиб называется плоским (рис.4.1.а), в противном случае – пространственным (рис.4.1.б).