
Добавил:
Upload
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:otv_na_bilety_matan.docx
X
- •2.Понятие функции. Способы задания функции
- •3.Типы ф-й
- •4.Основные свойства функций.
- •6) Ограниченная и неограниченная функции.
- •7) Периодическость функции.
- •5.Предел ф-ии
- •8.Правило предельного перехода
- •9.Признак существования предела функции. Первый замечательный предел
- •14. Сравнение бесконечно малых величин
- •15. Сравнение бесконечно больших величин
- •16. Производная и ее геометрический смысл.
- •17.Уравнение касательной и нормали к линии.
- •18. Правила дифференцирования
- •19.Производные сложной и обратной функции
- •Доказательство
- •Доказательство
- •20. Производные основных элементарных функций
- •22.Дифференцирование неявных и параметрически заданных функций
- •23.Производные высших порядков
- •24.Дифференциал функции и его геометрический смысл
- •25. Дифференцируемость функции
- •26. Применение дифференциала к приближенным вычислениям
- •27. Основные теоремы о дифференцируемых функциях
- •28. Правило Лопиталя
- •29. Интервалы монотонности функции
- •30. Экстремумы функции
- •35.Асимптоты графика функции
- •36.Формула Тейлора
- •Формула тейлора
- •Остаточный член формулы тейлора
35.Асимптоты графика функции
Прямая называется асимптотой графика функции y = f(x), если расстояние от переменной точки M графика до этой прямой при удалении точки M в бесконечность стремится к нулю, т.е. точка графика функции при своем стремлении в бесконечность должна неограниченно приближаться к асимптоте.
Кривая может приближаться к своей асимптоте, оставаясь с одной стороны от нее или с разных сторон, бесконечное множество раз пересекая асимптоту и переходя с одной ее стороны на другую.
36.Формула Тейлора
Формула Тейлора показывает поведение функции в окрестности некоторой точки. Формула Тейлора функции часто используется при доказательстве теорем в дифференциальном исчислении.
Формула тейлора
, где Rn(x) - остаточный член формулы Тейлора.
Остаточный член формулы тейлора
В форме Лагранжа:
В форме Коши:
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]