
- •2.Понятие функции. Способы задания функции
- •3.Типы ф-й
- •4.Основные свойства функций.
- •6) Ограниченная и неограниченная функции.
- •7) Периодическость функции.
- •5.Предел ф-ии
- •8.Правило предельного перехода
- •9.Признак существования предела функции. Первый замечательный предел
- •14. Сравнение бесконечно малых величин
- •15. Сравнение бесконечно больших величин
- •16. Производная и ее геометрический смысл.
- •17.Уравнение касательной и нормали к линии.
- •18. Правила дифференцирования
- •19.Производные сложной и обратной функции
- •Доказательство
- •Доказательство
- •20. Производные основных элементарных функций
- •22.Дифференцирование неявных и параметрически заданных функций
- •23.Производные высших порядков
- •24.Дифференциал функции и его геометрический смысл
- •25. Дифференцируемость функции
- •26. Применение дифференциала к приближенным вычислениям
- •27. Основные теоремы о дифференцируемых функциях
- •28. Правило Лопиталя
- •29. Интервалы монотонности функции
- •30. Экстремумы функции
- •35.Асимптоты графика функции
- •36.Формула Тейлора
- •Формула тейлора
- •Остаточный член формулы тейлора
24.Дифференциал функции и его геометрический смысл
Понятие дифференциала функции
Пусть функция у=ƒ(х) имеет в точке х отличную от нуля производную.
Тогда, по теореме о связи функции, ее предела и бесконечно малой функции, можно записать D у/D х=ƒ'(х)+α, где α→0 при ∆х→0, или ∆у=ƒ'(х)•∆х+α•∆х.
Таким
образом, приращение функции ∆у
представляет собой сумму двух слагаемых
ƒ'(х)•∆х и а•∆х, являющихся бесконечно
малыми при ∆x→0. При этом первое слагаемое
есть бесконечно малая функция одного
порядка с ∆х, так как
а
второе слагаемое есть бесконечно малая
функция более высокого порядка, чем ∆х:
Поэтому первое слагаемое ƒ'(х)· ∆х называют главной частью приращения функции ∆у.
Дифференциалом функции у=ƒ(х) в точке х называется главная часть ее приращения, равная произведению производной функции на приращение аргумента, и обозначается dу (или dƒ(х)):
dy=ƒ'(х)•∆х. (24.1)
Дифференциал dу называют также дифференциалом первого порядка. Найдем дифференциал независимой переменной х, т. е. дифференциал функции у=х.
Так как у'=х'=1, то, согласно формуле (24.1), имеем dy=dx=∆x, т. е. дифференциал независимой переменной равен приращению этой переменной: dх=∆х.
Поэтому формулу (24.1) можно записать так:
dy=ƒ'(х)dх, (24.2)
иными словами, дифференциал функции равен произведению производной этой функции на дифференциал независимой переменной.
Из формулы (24.2) следует равенство dy/dx=ƒ'(х). Теперь обозначение
производной dy/dx можно рассматривать как отношение дифференциалов dy и dх.
<< Пример 24.1
Найти дифференциал функции ƒ(х)=3x2-sin(l+2x).
Решение: По формуле dy=ƒ'(х) dx находим
dy=(3х2-sin(l+2x))'dx=(6х-2cos(l+2х))dx.
Геометрический смысл дифференциала функции
Выясним геометрический смысл дифференциала.
Для этого проведем к графику функции у=ƒ(х) в точке М(х; у) касательную МТ и рассмотрим ординату этой касательной для точки х+∆х (см. рис. 138). На рисунке ½ АМ½ =∆х, |AM1|=∆у. Из прямоугольного треугольника МАВ имеем:
Но, согласно геометрическому смыслу производной, tga=ƒ'(х). Поэтому АВ=ƒ'(х)•∆х.
Сравнивая полученный результат с формулой (24.1), получаем dy=АВ, т. е. дифференциал функции у=ƒ(х) в точке х равен приращению ординаты касательной к графику функции в этой точке, когда х получит приращение ∆х.
В этом и состоит геометрический смысл дифференциала.
25. Дифференцируемость функции
Функция y=f(x) называется дифференцируемой в
некоторой точке x0,
если она имеет в этой точке определенную
производную, т.е. если предел
отношения
существует
и конечен.
Если функция дифференцируема в каждой точке некоторого отрезка [а; b] или интервала (а; b), то говорят, что онадифференцируема на отрезке [а; b] или соответственно в интервале (а; b).
Справедлива следующая теорема, устанавливающая связь между дифференцируемыми и непрерывными функциями.
Теорема. Если функция y=f(x) дифференцируема в некоторой точке x0, то она в этой точке непрерывна.
Таким образом,из дифференцируемости функции следует ее непрерывность.
Доказательство.
Если
,
то
,
где α бесконечно малая величина, т.е. величина, стремящаяся к нулю при Δx→0. Но тогда
Δy=f '(x0) Δx+αΔx=> Δy→0 при Δx→0, т.е f(x) – f(x0)→0 при x→x0, а это и означает, что функция f(x) непрерывна в точке x0. Что и требовалось доказать.
Таким образом, в точках разрыва функция не может иметь производной. Обратное утверждение неверно: существуют непрерывные функции, которые в некоторых точках не являются дифференцируемыми (т.е. не имеют в этих точках производной).
Р
ассмотрим
на рисунке точки а,
b, c.
В точке a при Δx→0 отношение не имеет предела (т.к. односторонние пределы различны при Δx→0–0 и Δx→0+0). В точкеA графика нет определенной касательной, но есть две различные односторонние касательные с угловыми коэффициентами к1 и к2. Такой тип точек называют угловыми точками.
В
точке b при
Δx→0
отношение
является
знакопостоянной бесконечно большой
величиной
.
Функция имеет бесконечную производную.
В этой точке график имеет вертикальную
касательную. Тип точки – "точка
перегиба" cвертикальной касательной.
В точке c односторонние производные являются бесконечно большими величинами разных знаков. В этой точке график имеет две слившиесявертикальные касательные. Тип – "точка возврата" с вертикальной касательной – частный случай угловой точки.