- •27. Общее решение линейных рекуррентных соотношений второго порядка с постоянными коэффициентами (случай одинаковых корней характеристического уравнения). Привести примеры.
- •28.Общее решение линейных рекуррентных соотношений с постоянными коэффициентами, порядок которых выше второго. Привести примеры.
- •29. Решение рекуррентных соотношений, используя производящую функцию. Понятие производящей функции. Алгоритм решения рекуррентных соотношений с помощью производящих функций.
- •Алгоритм
- •Общая схема
- •Алгоритм
- •Числа Фибоначчи
- •34. Булевы функции от одного аргумента. (Определение. Все булевы функции от одного аргумента).
Общая схема
Пусть последовательность (a0, a1, a2, ...) удовлетворяет некоторому рекуррентному соотношению. Мы хотим получить выражение для an (при n≥0) в замкнутом виде (если это возможно). Производящие функции позволяют делать эту работу почти механически по одному и тому же алгоритму. Рассмотрим общую схему на простом примере, который позволит продемонстрировать базовые приёмы работы.
Задано линейное однородное рекуррентное соотношение порядка 2 с постоянными коэффициентами:
Порядок соотношения — это его «глубина», то есть количество предшествующих элементов, требуемых для вычисления элемента с номером n. В данном случае порядок равен 2, так как для вычисления an требуется знать an-1 и an-2.
Попытаемся для начала «угадать» ответ:
по данной таблице трудно что-либо сказать сразу, если вы, конечно, не видели этой последовательности раньше и не обладаете достаточным опытом разгадывания такого рода комбинаций. Значит самое время воспользоваться техникой производящий функций.
Будем искать производящую функцию последовательности в виде
с этой целью умножим верхнюю строчку в записи рекуррентного соотношения на z0, следующую — на z1 и последнюю — на zn:
Теперь сложим все уравнения для всех значений n:
Левая часть уравнения в точности равна G(z), а в правой части есть суммы, очень похожие на функцию G(z), но не равные ей. Эти суммы нужно любым законным способом (используя правила работы с алгебраическими выражениями) привести к виду G(z). Начнём с первой:
Равенство (1) получатся вынесением z в первой степени за знак суммы, это необходимо, чтобы уровнять степень переменной z и индекс переменной a внутри суммы. Действие (2) — изменение индекса суммирования, которое позволяет избавиться от n-1. Равенство (3) получается, если прибавить и снова отнять значение a0, чтобы получить полную сумму от n=0 до ∞. Равенство (4) справедливо в силу того, что a0=0.
Аналогичные манипуляции со второй суммой дают нам выражение
Теперь наше исходное уравнение для производящей функции принимает вид:
откуда получаем производящую функцию последовательности в замкнутом виде —
Отыскав производящую функцию в замкнутом виде, её нужно снова разложить в ряд. Это можно сделать разными способами, но самый простой из них — разбить всю дробь на простые дроби и применить формулу для разложения 1/(1-z). Итак, разложим знаменатель функции на множители:
Теперь разобьём дробь на сумму простых дробей:
Вспомним разложение для простейшей рациональной функции:
Из этого разложения следует, что (см. также таблицу производящих функций)
Таким образом,
С другой стороны, мы искали G(z) в виде
поэтому, в силу равенства рядов, an=3n-2n (для n≥0). Теперь скажите: как проверить правильность полученного ответа?
Алгоритм
Алгоритм получения замкнутого выражения для чисел an, удовлетворяющих рекуррентному соотношению, с помощью производящих функций состоит из 4 шагов.
Записать рекуррентное соотношение и начальные данные для него в следующем виде (если порядок соотношения равен k):
Домножить каждую строчку на z в соответствующей степени и просуммировать строчки для всех n≥0.
В полученном уравнении привести все суммы ∑ к замкнутому виду. Получить уравнение для производящей функции.
Выразить G(z) в явном виде (решить уравнение, полученное на предыдущем шаге) и разложить производящую функцию в ряд по степеням z.
31. Общая схема решения рекуррентного соотношения с помощь производящих функций на примере решения рекуррентного соотношения составленного для чисел Фибоначчи , , , .