
- •1)Система электроснабжения как подсистема энергетической и технологической систем
- •2.Особенности электроснабжения промышленных предприятий
- •3. Основные требования к системам электроснабжения
- •4. Характеристики промышленных потребителей электроэнергии
- •5. Приемники электроэнергии
- •6. Понятие процесса электроснабжения и системы электроснабжения и её место в электроэнергетике
- •7. Обобщенная структура системы электроснабжения
- •8. Требования, предъявляемые к системам электроснабжения
- •9. Центр электрического питания промышленного предприятия
- •10. Главная понизительная подстанция
- •11. Центральный распределительный пункт
- •12. Комплектные распределительные устройства
- •13. Типовые схемные решения высоковольтных распределительных электрических сетей
- •14. Высоковольтные воздушные линии
- •15. Высоковольтные кабельные линии
- •17. Силовые низковольтные распределительные сети
- •18. Осветительные сети
- •19. Конструктивное выполнение низковольтных распределительных сетей
- •20. Трансформаторные подстанции 10/0,4 кВ
- •21. Распределительные пункты в нврс
- •22. Резервирование в сетях до 1000 в
- •24. Компенсированная сеть
- •25. Сеть с глухозаземленной нейтралью
- •26. Сеть с эффективно заземленной нейтралью
- •27. Сеть с резистивным заземлением нейтрали
- •28. Понятие расчетной нагрузки как эквивалентной по нагреву
- •29. Метод коэффициента использования и коэффициента максимума (метод упорядоченных диаграмм)
- •30. Метод коэффициента спроса
- •31. Расчет нагрузки электрического освещения
- •32. Оценка числа и мощности трансформаторов цеховых подстанций
- •33. Выбор сечения линий электропередачи (проводов и кабелей) напряжением выше 1000 в
- •34. Выбор электрических аппаратов напряжением выше 1000 в
- •35. Порядок расчета токов коротких замыканий в сэс
- •36. Проверка элементов сэс на действия токов коротких замыканий
- •37.Выбор аппаратов напряжением до 1000 в
- •38. Выбор сечения линий проводов и кабелей напряжением ниже 1000 в.
- •38. Выбор сечения линий проводов и кабелей напряжением ниже 1000 в
- •39. Расчет токов короткого замыкания в сети напряжением до 1 кВ
- •40. Проверка коммутационно-защитного оборудования на действия токов коротких замыканий и чувствительности защиты
25. Сеть с глухозаземленной нейтралью
Глухозаземленная нейтраль -это нейтраль трансформатора или генератора, присоединенная непосредственно к заземляющему устройству.
Однофазное замыкание на землю (например, фазы А) в системах с глухозаземленной нейтралью (рис. 7.5) представляет собой короткое замыкание, так как поврежденная фаза оказывается короткозамкнутой через землю и нейтраль трансформатора или генератора. Ток в месте повреждения ограничен только сопротивлениями источников питания и поэтому является током КЗ.
а б
Рис. 7.5. Система напряжением выше 1000 В с глухозаземленной
нейтралью:
а - расчетная схема замещения в аварийном режиме; б - векторная диаграмма напряжений
Системы с нейтралью, заземленной через R, по сравнению с системой, нейтраль которой заземлена через хр, имеют следующие недостатки: для достижения одной и той же степени ограничения тока замыкания на землю требуется большая величина сопротивления (R), так как сопротивление реактора (хр) складывается арифметически с индуктивным сопротивлением системы, а следовательно, и напряжения в системе, и потери мощности при коротких замыканиях больше; конструктивно выполнение R сложнее, особенно в системах высоких напряжений и больших мощностей, и стоимость сооружения выше, чем для реакторов (усложняется охлаждения).
Таким образом, введение в нейтраль реактора для ограничения тока однофазного КЗ является более экономически целесообразным мероприятием, получившим соответствующее распространение. Область применения способа заземления нейтрали через активное сопротивление ограничена в основном генераторами и сетями генераторного напряжения.
Основные достоинства системы с глухим заземлением нейтрали заключаются в следующем: стабилизируется потенциал нейтрали и устраняются возможности появления устойчивых заземляющих дуг и связанных с ними последствий; облегчается работа изоляции при замыканиях на землю и переходных процессах, что дает возможность либо снизить уровень изоляции (а следовательно, экономии в затратах), либо повысить надежность работы установок в результате большего запаса прочности в изоляции при сохранении уровня изоляции по сравнению с другими способами заземления нейтрали; обеспечивается выполнение четкой, надежной, селективной и быстродействующей релейной защиты; облегчается эксплуатация системы в отношении режима нейтрали.
Однако система с глухим заземлением нейтрали имеет ряд недостатков: любое однофазное замыкание на землю является КЗ и релейная защита немедленно отключает поврежденный участок, т.е. нарушается бесперебойность электроснабжения, что требует для ограничения бестоковых пауз применять быстродействующие устройства АПВ и выполнять системы с резервированием для наиболее ответственных потребителей, это приводит к повышению затрат, дополнительным капиталовложениям и ущербу от недоотпуска продукции; наблюдается значительное электромагнитное влияние на линии связи, что ведет к увеличению затрат на защиту последних; удорожается релейная защита в связи с устройством ее в трехфазном исполнении; токи КЗ могут достигать очень больших значений (превышать токи трехфазных КЗ) при замыканиях на землю, что является причиной динамических разрушающих усилий, распространяющихся на значительную часть системы (повреждения железа статора при пробое изоляции на корпус, разрывы оболочек кабелей, разрушение гирлянд изоляторов на ЛЭП и т.п.); при больших токах КЗ уменьшается синхронизирующий момент (синхронные двигатели могут затормозиться, а параллельно работающие станции - выйти из синхронизма); существует опасность поражения людей вследствие больших напряжений прикосновения и шага из-за токов КЗ при однофазном замыкании на землю; значительно увеличиваются затраты на заземляющие устройства.
Глухое заземление нейтралей электроустановок не только предупреждает возникновение в них дуговых перенапряжений, но и приводит к облегчению изоляции по отношению к земле, что дает возможность снизить затраты, причем экономия увеличивается с ростом напряжения сети. В связи с этим глухозаземленная нейтраль нашла широкое применение в системах напряжением 110 кВ и выше. При необходимости ограничения тока однофазного КЗ производят разземле-ние нейтрали части трансформаторов.
Сети с глухозаземленной нейтралью применяют также в системах напряжением до 1000 В. Ее целесообразно применять в трехфазных системах питания напряжением 220 и 380 В при значительно разветвленной сети.