
- •1.Системы единиц измерения физических величин.
- •3.Предмет механики.Классическая и квантовая механика.
- •4.Основные единицы си
- •5.Механика,её разделы и абстракции.
- •7.Скорость и ускорение
- •12.Равновесие механической системы
- •9.Инерциальные системы отсчета .Принцип относительности Галилея
- •10.Законы Ньютона
- •11.Законы сохранения
- •8.Угловая скорость и угловое ускорение
- •13.Силы инерции.
- •15.Движение в поле тяготения.
- •16.Космические скорости.
- •17.Абсолютно упругий удар.
- •18.Абсолютно неупругий удар.
- •22.Момент импульса.
- •19.Сила упругости. Закон Гука.
- •20.Сила трения. Виды трения. Законы Кулона для внешнего трения.
- •21.Вращательное движение твердого тела.
- •23.Момент силы.
- •24.Момент инерции твердого тела.
- •25.Кинетическая энергия твердого тела при вращении.
- •26.Принцип относительности Эйнштейна – постулаты
- •27.Преобразования Лоренца.
- •28.Относительность понятия одновременности.
- •29.Длина тел в разных системах отсчета.
- •30.Длительность события.
- •31.Интервал между событиями.
- •32.Преобразовани е и сложение скоростей в релятивистской механики.
- •42.Распределение Больцмана.
- •43.Распределение Максвела – Больцмана.
- •33.Основной закон релятивистской динамики матер. Точки
- •34.Закон взаимосвязи массы и энергии.
- •35.Основные понятия молекулярной физики.
- •36.Статистический и термодинамический методы исследования.
- •37.Основные положения мкт.
- •38.Основное уравнение мкт идеального газа.
- •39.Опытные законы идеального газа
- •50.Макро – и микросотояния
- •40.Уранение Менделеева – Клапейрона.
- •41.Барометрическая формула.
- •44.Первое начало термодинамики. Следствие.
- •45.Первое начало для термодинамики для изопроцкссов.
- •46.Адиабатный процесс.Уравнение Пуассона.
- •47.Теплоеемкость идеального газа. Уравнение Майера.
- •48.Недостатки классической теории теплоемкости.
- •49.Теплоемкость жидкостей и твердых тел.
- •51.Статистический вес.
- •52. Равновесные и неравновесные состоянияия.
- •53.Необратимые процессы
- •54.Энтропия. Изменение энтропии.
- •55.Приведенное тепло. Изменение энтропии в неравновесном процессе
- •56.Круговые процессы.
- •58. Кпд тепловой машины.
- •59.Цикл Карно. Работа в цикле.
- •60.Теорема Карно.
- •61.Формулировка второго начала термодинамики.
- •63.Явление переноса.
- •64.Среднее число столкновений. Средняя длина свободного пробега молекул.
- •66.Теплопроводность.
- •67. Явление вязкости или внутреннего трения.
- •68.Явление переноса в разряженном газе.
- •69.Модель газа Ван-дер Ваальса.
- •70.Свойства реальных газов.
- •71.Уравнение состояния идеальных газов.
- •72.Особенности жидкого состояния вещества.
- •73.Свободная поверхность жидкости.
- •74.Коэффициент поверхностного натяжения.
- •75.Смачивание. Капилярность.
- •76.Капилярные явления.
- •77.Давление под изогнутой поверхностью жидкости.
- •78.Избыточное давление. Формула Лапласа.
- •79.Строение жидкости и твердых тел.
- •80.Температурное расширение жидкостей и твердых тел.
51.Статистический вес.
Статист-ий вес состояния сис-мы - это число способов, к-ыми может быть реализовано данное сост-ие сис-мы. Стат-ие веса всех возможных сост-ий сис-мы опред-т ее энтропию.
52. Равновесные и неравновесные состоянияия.
Равновесное- макросост-ие сис-мы, к-ое не имеет тенденции к изм-ию с течением времени. Вероятность сот-ия проп-на его стат-ому весу. поэтому равн-ое сост-ие можно опред-ть как сост-ие, стат-ий вес к-ого максимален. Сист-ма, нах-ся в равнов-ом сост-ии, время от времени самопроиз-о откл-ся от равн-ия. Однако эти откл-ия явл-ся незн-ыми и кратковр-ми. Подавл-ая часть времени сис-ма проводит в равновесном сост-ии, характ-ом макс-ым стат-им весом. Нерав-ое -макросост-ие сис-мы, к-ое имеет тенденции к изм-ию с теч-ем времени.
53.Необратимые процессы
Стат-ая физика вскр-т природу необратимых процессов. Например: газ нах-ся в левой пол-не сосуда и отд-ся от правой пер-ой. если убрать перег-ку газ распростр-ся на весь сосуд. Этот процесс будет необратимым, т. к. вероятность того, что в рез-те тепл-о дв-ия все мол-ы соб-ся в одной из пол-н сосуда равна 0. Процесс распростр-ия газа на весь сосуд оказ-ся необр-м вследствие того, что обратный ему процесс маловероятен. этот вывод может быть распр-ен и на др. процессы. Необратимый процесс- процесс, к-ый протекает только в одном направлении. Обратимый процесс – процесс перехода сис-мы от одного равн-ого сост-ия в другое, к-ые можно провести в обр-ом напр-ии через ту же послед-ть промеж-ых равнов-ых сост-ий.
54.Энтропия. Изменение энтропии.
Энтропия – приведённое кол-во теплоты, сообщаемое телу в любом обрати мом процесс = 0. бQ/T = 0 подинтегр. выраж. полный дифференциал некоторой ф-ции, кото рая определяется только состоянием системы и не зависит от пути каким система пришла в это сост. Ф-ция сост. дифференциала, которая являетсябQ/T – называется энтропией.Неравен ство Клаузиса. Если система освершает равновесный переход из сост. 1 в 2 S12 = S2 – S1 = ∫бQ/T = ∫(dU + бA)/T = m/M Cv∫dT/T + m/MR∫dV/V = dU = m/M CvT;
бA = m/M RT dV/V = m/M(Cv ln T2/T1 +R ln V2/V1);
Изменение энтропии S идеального газа при переходе его из состояния 1 в 2 не зависит от вида процесса, а зависит от параметров начального и конечного состояния.Изоэнтропийный процесс – это процесс, протекающий, при постоянной энтропии. Это адиабатный обратимый процесс, для него бQ = 0 ; бS = 0
55.Приведенное тепло. Изменение энтропии в неравновесном процессе
56.Круговые процессы.
Круговые процессы – процесс при котором система, пройдя ряд состояний возвращается в исходное. Прямые и обратные циклы. На диаграм ме процессов цикл изобр. замкнутой кривой. Цик лы можно разбить на процессы расширения и сжа тия. Работа за цикл определяется площадью замк нутой кривой. Если работа за цикл > 0, то цикл назы вается прямым, если меньше нуля – обратный. Термический КПД для кругового процесса. Из пер вого начала термодин. для круг. процесса:бА = dA;
Q=A;Q=Q1-Q2;Q1-кол-вр теплоты пол. системой Q2-кол-во теплоты отдан.с-ме;ɳ=A/Q=(Q1-Q2)/Q1=1-Q2/Q1; ɳ<1Обратимые и необратимые процессы
Обратимый процесс, кот. может проходить как в прямом так и в обратном направлении. Если такой процесс происходит с начала в прям., а затем в обрат. направл. и система возвр. в исходное сост., то в этой системе в окружающих телах ничего не изменится. Всякий процесс, не удовлетворяющий этим условиям называется необратимым. Энтро пия. Приведённое кол-во теплоты – это отношение теплоты полученное в изотермическом процессе к Т теплоотдающего тела.
dP/dT =L/T(V2-V1). Оно определяет метод расчета равновесия 2-ух фаз одного в-ства. P–равновесное давление, L-теплота фазового перехода ,V2-V1 –изменение обьема ,Т -температура перехода.
Анализ экспериментальной диаграммы состояния . --На основании экспериментальной диаграммы состояния можно судить в каком состоянии нахо дится вещество при изменении Р и Т и какие фазо вые переходы будут происходитьФазовые перехды.
Фаза – т.д. равновесное состояние в-ства отличного по физическим с-ствам от других возможных рав новесных состояний этого же в-ства. Фазовый пере ход связан с качественным изменением в-ства—пе реход из одной модификации в другую – углерод, алмаз. Фазовый переход первого рода – переход сопровождающийся погщением или выделением тепла. Фазовый переход 2-го рода не связан с пог лощением или выделением тепла или изменением объема (переход ферромагнитных в-ств Fe или Ni в паромагнитное состояние). (переход Ме и спла вов при Т= -273 0 К характеризуется скачкообразным уменьшением сопротивлением до 0.