
- •Тема 1. Определители, матрицы, системы
- •П равила вычисления определителей второго и третьего порядка:
- •Свойства определителей:
- •Миноры и алгебраические дополнения
- •Теорема Лапласа
- •Вычисление определителей высших порядков, правило треугольника.
- •Виды матриц:
- •Основные операции с матрицами и их свойства
- •Ранг матрицы
- •Обратная матрица
- •Теорема о существовании и единственности обратной матрицы
- •Системы линейных алгебраических уравнений (основные понятия)
- •Методы решения
- •Условия применяемости методов
- •Теорема Кронекера-Капелли
- •Однородные системы
- •Фундаментальная система решений
- •Связь между однородной и неоднородной системами решений
- •Тема 2. Векторная алгебра. Аналитическая геометрия.
- •Векторная алгебра (основные понятия)
- •Действия над векторами
- •Линейная зависимость и независимость системы векторов (линейная комбинация)
- •Теоремы о единственности разложения любого вектора пространства (r2, r3)
- •Координаты, проекция вектора на ось
- •Декартова система координат
- •Скалярное произведение векторов (определение, свойства, приложение)
- •Векторное произведение векторов (определение, свойства, приложение)
- •Смешанное произведение векторов (определение, свойства, приложение)
- •Соответствие между геометрическими образами и уравнениями.
- •Плоскость в пространстве (типы уравнений, взаимное расположение)
- •Прямая на плоскости и в пространстве (типы уравнений, взаимное расположение)
- •Взаимное расположение прямой и плоскости
- •Кривые второго порядка
- •Окружность, эллипс, гипербола, парабола (вывод канонического уравнения, исследование кривой)
- •Преобразование системы координат на плоскости (параллельный перенос, поворот)
- •6 Основных типов поверхностей второго порядка
- •С истемы координат
- •Тема 3. Элементы линейной алгебры.
- •Линейное пространство (определение, примеры)
- •Линейная зависимость и независимость системы векторов (линейная комбинация)
- •Базис. Координаты.
- •Изменение координат при замене базиса (матрица перехода)
- •Определение скалярного произведения в линейном пространстве
- •Евклидово пространство (определение, примеры)
- •Неравенство Коши-Буняковского
- •Ортонормированный базис и его построение. Процесс ортогонализации.
- •Линейный оператор и его матрица
- •Зависимость матрицы от базиса
- •Собственные значения и вектора линейного оператора, их зависимость
- •Матрица линейного оператора в базисе из собственных векторов
- •Условия существования базиса из собственных векторов
- •Примеры операторов
- •Квадратичные формы
- •Упрощение общего уравнения линий и поверхностей второго порядка. Приведение их к каноническому виду
- •Тема 4. Введение в анализ
- •Комплексные числа (формы записи, основные операции)
- •Переменные и постоянные величины, множества (основные понятия)
- •Функция (определение, способы задания, свойства)
- •Предел числовой последовательности
- •Предел функции, геометрическая интерпретация
- •У равнения касательной и нормали
- •Гиперболические функции
- •Понятие дифференцируемой функции
- •Формула тейлора
- •Наибольшее и наименьшее значение функции
Наибольшее и наименьшее значение функции
Наибольшее и наименьшее значение функции обычно ищется на некотором интервале X, который является или всей областью определения функции или частью области определения.
Сам интервал X может быть отрезком
,
открытым интервалом
,
бесконечным промежутком
.
Наибольшим значением функции y =
f(x) на промежутке X называют такое значение
,
что для любого
справедливо
неравенство
.
Наименьшим значением функции y =
f(x) на промежутке X называют такое значение
,
что для любого
справедливо неравенство
.
Эти определения интуитивно понятны:
наибольшее (наименьшее) значение функции
– это самое большое (маленькое) принимаемое
значение на рассматриваемом интервале
при абсциссе
.
Стационарные точки – это значения аргумента, при которых производная функции обращается в ноль. Функция часто принимает свое наибольшее (наименьшее) значение на промежутке X в одной из стационарных точек из этого промежутка.
Иногда границы промежутка X совпадают с границами области определения функции или интервал X бесконечен. А некоторые функции на бесконечности и на границах области определения могут принимать как бесконечно большие так и бесконечно малые значения. В этих случаях ничего нельзя сказать о наибольшем и наименьшем значении функции.
Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на отрезке [a; b].
Находим область определения функции и проверяем, содержится ли в ней весь отрезок [a; b].
Определяем все стационарные точки, попадающие в отрезок [a; b]. Для этого, находим производную функции, приравниваем ее к нулю, решаем полученное уравнение и выбираем подходящие корни. Если стационарных точек нет или ни одна из них не попадает в отрезок, то переходим к следующему пункту.
Вычисляем значения функции в отобранных стационарных точках (если таковые имеются), а также при x = a и x = b.
Из полученных значений функции выбираем наибольшее и наименьшее - они и будут искомыми.