
- •21.Кроссинговер. Доказательства происхождения кроссинговера в мейозе и митозе на
- •22.Цитологическое доказательство кроссинговера , Множественные перекрест, Интерференция. Линейное расположение генов
- •35.Комбинативная изменчивость, механизм ее возникновения, роль в эволюции и
- •36.Автоплиплойды, особенности мейозаи хаактер наследования,Автополиплойды и т.Д.
- •49.Генетический контроль и механизмы эксцизионной пострепликативной репарации, репарация неспаренных оснований, репаративный синтез днк.
- •61.Проблемы генотерапии. Значение генетической инженерии для решения задач биотехнологии, сельского хозяйства, медицины и различных отраслей народного хозяйства.
- •63. Факторы динамики генетического состава популяции (дрейф генов), мутационный процесс, межпопуляционные миграции, действие отбора.
- •64.Понятио о Бла бла бла
- •66 Ответ
22.Цитологическое доказательство кроссинговера , Множественные перекрест, Интерференция. Линейное расположение генов
Цитологическое доказательство кроссинговера
После того как генетическими методами удалось установить явление кроссинговера, необходимо было получить прямое доказательство обмена участками гомологичных хромосом, сопровождающегося рекомбинацией генов. Наблюдаемые в профазе мейоза картины хиазм могут служить лишь косвенным доказательством этого явления, констатация происшедшего обмена прямым наблюдением невозможна, так как обменивающиеся участками гомологичные хромосомы обычно абсолютно одинаковы по величине и форме.
Крейтов и Мак-Клинток удалось получить у кукурузы форму, у которой гомологичные хромосомы различались морфологически — одна была нормальной, а другая несла утолщение на конце одного плеча, второе ее плечо было удлинено. Эти особенности в строении пары хромосом легко обнаруживались при цитологических исследованиях.
В опыте нормальная хромосома несла рецессивный ген с (неокрашенный эндосперм) и доминантный ген wx+ (крахмалистый эндосперм), измененная хромосома - доминантный ген с+ (окрашенный эндосперм) и рецессивный ген wx (восковидный эндосперм). Дигетерозиготу скрещивали с линией, имеющей морфологически нормальные хромосомы, меченные рецессивными генами с и wx. В потомстве получили как некроссоверные, так и кроссоверные зерна. При цитологическом изучении их было обнаружено, что кроссоверные зерна неизменно содержали хромосомы с обменявшимися участками: нормальной длины, но с утолщением или удлиненную без утолщения.
Таким образом, одновременно цитологически и генетически было показано, что рекомбинация генов сопровождается обменом участками гомологичных хромосом в профазе мейоза. Морган предположил, что кроссинговер между двумя генами может происходить не только в одной, но и в двух и даже большем числе точек. Четное число перекрестов между двумя генами, в конечном счете, не приводит к их перемещению из одной гомологичной хромосомы в другую, поэтому число кроссинговеров и, следовательно, расстояние между этими генами, определенное в эксперименте, снижаются. Обычно это относится к достаточно далеко расположенным друг от друга генам. Естественно, что вероятность двойного перекреста всегда меньше вероятности одинарного. В принципе она будет равна произведению вероятности двух единичных актов рекомбинации. Например, если одиночный перекрест будет происходить с частотой 0,2, то двойной – с частотой 0,2 × 0,2 = 0,04. В дальнейшем, наряду с двойным кроссинговером, было открыто и явление множественного кроссинговера: гомологичные хроматиды могут обмениваться участками в трех, четырех и более точках.
Интерференция – это подавление кроссинговера на участках, непосредственно прилегающих к точке происшедшего обмена. Рассмотрим пример, описанный в одной из ранних работ Моргана. Он исследовал частоту кроссинговера между генами w (white – белые глаза), у (yellow – желтое тело) и m (miniature – маленькие крылья), локализованными в Х-хромосоме D. melanogaster. Расстояние между генами w и у в процентах кроссинговера составило 1,3, а между генами у и m – 32,6. Если два акта кроссинговера наблюдаются случайно, то ожидаемая частота двойного кроссинговера должна быть равна произведению частот кроссинговера между генами у и w и генами w и m. Другими словами, частота двойных кроссинговеров будет 0,43%. В действительности в опыте был обнаружен лишь один двойной кроссинговер на 2205 мух, т. е. 0,045%. Ученик Моргана Г. Меллер предложил определять интенсивность интерференции количественно, путем деления фактически наблюдаемой частоты двойного кроссинговера на теоретически ожидаемую (при отсутствии интерференции) частоту. Он назвал этот показатель коэффициентом коинциденции, т. е. совпадения. Меллер показал, что в Х-хромосоме дрозофилы интерференция особенно велика на небольших расстояниях; с увеличением интервала между генами интенсивность ее уменьшается и на расстоянии около 40 морганид и более коэффициент коинциденции достигает 1 (максимального своего значения).
Представления о расположении генов на хромосомах (в группах сцепления) сводятся к тому, что они располагаются в линейном порядке, причем, чем больше расстояние между генными локусами,тем большей является частота кроссинговера между ними и наоборот, линейный порядок генов характерен для групп сцепления всехорганизмов, включая человека, и определяет принципы построениягенетических карт хромосом, которые представляют собой графическое изображение расстояний между генами в группах сцепления.
Эти представления указывали на то, что линейный порядок характерен не толькодля расположения генов на хромосомах, но и для организации генетического материала внутри генов.
Анализ явлений сцепленного наследования, кроссинговера, сравнение генетической и цитологической карт позволяют сформулировать основные положения хромосомной теории наследственности:
Гены локализованы в хромосомах. При этом различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален.
Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.
Гены расположены в хромосоме в линейной последовательности.
Гены одной хромосомы образуют группу сцепления, благодаря нему происходит сцепленное наследование некоторых признаков. При этом сила сцепления находится в обратной зависимости от расстояния между генами.
Каждый биологический вид характеризуется определенным набором хромосом — кариотипом.