Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
velikaya_shpora.doc
Скачиваний:
11
Добавлен:
18.04.2019
Размер:
1.37 Mб
Скачать

29. Параметрический способ задания функции. Параметрическое уравнение окружности, эллипса.

Пусть даны две функции: х=(t), y=(t) (1)

одной независимой переменной t, определенные и непрерывные в одном и том же промежутке. Если х=(t) строго монотонна, то обратная к ней функция t=(х) однозначна, также непрерывна и строго монотонна. Поэтому у можно рассм как функцию, зависящую от переем t, называемой параметром: y= (х) . В этом случае говорят, что функция у от х задана параметрически с помощью уравнения (1).

Отметим, что функция непрерывна в силу теоремы о непрерывности сложной функции.

Пример 2 Пусть х =a cos t, y= b sin t (0t2)

Данные равенства являются параметрическими уравнениями эллипса, т.к. эллипс получается из окружности радиуса а сжатием ее в a/b раз вдоль оси Оу. Из примера 1 следует, что параметрическими уравнениями окружности х22=r2 явл-ся уравнения х =a cos t, y= b sin t (0t2). Итак, параметрические уравнения эллипса получаются из параметрических уравнений окружности умножением правой части уравнения для ординаты у на b/a и имеют вид: х =a cos t, y= b sin t (0t2). Можно поступить проще. Исключая из этих уравнений параметр t(разрешая их относительно cost и sint, возводя полученные не равенства в квадрат и складывая), получаем:

(х/а)2 + (у/b)2 = cos2t + sin2t = 1 –уравнение эллипса.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]