- •1. Матрицы и действия над ними.
- •2. 1 2 3 И n порядок
- •3. Свойства определителей.
- •4. Разложение определителя по строке или столбцу.
- •5. Определитель произведения матриц.
- •6. Формулы Крамера для решения системы линейных уравнений.
- •7. Обратная матрица и ее вычисление.
- •Свойства обратной матрицы
- •8. Свойства обратной матрицы и новый вывод формул Крамера.
- •9. Определение n-мерных арифметических векторов и действий над ними.
- •10. Линейная зависимость и независимость векторов.
- •11. Максимальная линейно независимая подсистема векторов. Линейная зависимость векторов
- •Свойства систем векторов
- •12. Определение ранга матрицы. Теорема о ранге матрицы.
- •13. Теорема о равенстве числа векторов в двух максимальных линейно независимых подсистемах векторов.
- •14. Вычисление ранга матрицы методом окаймляющих миноров. Метод окаймляющих миноров
- •15. Вычисление ранга матрицы методом элементарных преобразований.
- •II. Метод элементарных преобразований
- •16. Теорема Кронекера-Капелли. Решение систем на основе теоремы Кронекера-Капелли.
- •17. Однородная система линейных уравнений. Свойства ее решений.
- •18. Фундаментальная система решений однородной системы линейных уравнений и теорема о числе решений в ее составе.
- •19. Связь решений линейной неоднородной и соответствующей ей однородной систем.
- •20. Метод Гаусса решения линейных уравнений.
- •§ 3. Декартова система координат в пространстве
- •§ 1. Декартова система координат на плоскости
- •22. Полярные координаты на плоскости и их связь с декартовыми прямоугольными координатами.
- •§ 2. Полярная система координат на плоскости
- •23. Понятие свободного вектора. Теорема о проекции вектора на ось.
- •Свободный вектор
- •24. Координаты вектора и их вычисление по координатам его начала и конца. Направляющие косинусы.
- •25. Длина вектора и формула для вычисления расстояния между двумя точками пространства.
- •1.6. Расстояние между двумя точками
- •26. Линейные операции над векторами. Линейные операции над векторами
- •27. Основные теоремы о проекциях векторов.
- •28. Разложение векторов на компоненты.
- •29. Скалярное произведение векторов и его свойства.
- •Геометрический смысл скалярного произведения векторов
- •Алгебраические свойства скалярного произведения
- •Геометрические свойства скалярного произведения
- •30. Векторное произведение векторов и его свойства.
- •Алгебраические свойства векторного произведения
- •Геометрические свойства векторного произведения
- •Выражение векторного произведения через координаты векторов
- •31. Смешанное произведение векторов и его свойства.
- •1.16. Смешанное произведение векторов и его свойства
- •Геометрические свойства смешанного произведения
- •Алгебраические свойства смешанного произведения
- •32. Общее уравнение прямой на плоскости.
- •33. Уравнение прямой в отрезках.
- •34. Нормальное уравнение прямой. Вычисление расстояния от точки до прямой на плоскости. Общее уравнение прямой
- •35. Общее уравнение плоскости.
- •36. Уравнение плоскости в отрезках.
- •37. Нормальное уравнение плоскости, Расстояние от точки до плоскости.
- •38. Канонические уравнения прямой.
- •39. Эллипс: уравнение, общий вид и свойства кривой.
38. Канонические уравнения прямой.
Составить уравнения прямой, проходящей через данную точку M(x0, y0, z0) параллельно данному вектору
→ |
a |
{l, m, n} ≠
→ |
0 |
(вектор
→ |
a |
называетсянаправляющим вектором прямой).
Решение. Пусть N(x, y, z) — произвольная точка пространства. Построим вектор MN = {x − x0, y − y0, z − z0} (рис.1).
Очевидно, что точка N принадлежит прямой тогда и только тогда, когда вектор MN коллинеарен вектору
→ |
a |
= {l, m, n} , т.е. когда их координаты пропорциональны:
|
|
(1) |
Эти уравнения называются каноническими уравнениями прямой в пространстве.
39. Эллипс: уравнение, общий вид и свойства кривой.
Э́ллипс (др.-греч. ἔλλειψις — опущение, недостаток, в смысле недостатка эксцентриситета до 1) —геометрическое место точек M Евклидовой плоскости, для которых сумма расстояний до двух данных точекF1 и F2 (называемых фокусами) постоянна и больше расстояния между фокусами, то есть
| F1M | + | F2M | = 2a, причем | F1F2 | < 2a. Окружность является частным случаем эллипса. Наряду с гиперболой и параболой, эллипс является коническим сечением и квадрикой. Эллипс также можно описать как пересечение плоскости и круговогоцилиндра или как ортогональную проекцию окружности на плоскость.