- •1. Матрицы и действия над ними.
- •2. 1 2 3 И n порядок
- •3. Свойства определителей.
- •4. Разложение определителя по строке или столбцу.
- •5. Определитель произведения матриц.
- •6. Формулы Крамера для решения системы линейных уравнений.
- •7. Обратная матрица и ее вычисление.
- •Свойства обратной матрицы
- •8. Свойства обратной матрицы и новый вывод формул Крамера.
- •9. Определение n-мерных арифметических векторов и действий над ними.
- •10. Линейная зависимость и независимость векторов.
- •11. Максимальная линейно независимая подсистема векторов. Линейная зависимость векторов
- •Свойства систем векторов
- •12. Определение ранга матрицы. Теорема о ранге матрицы.
- •13. Теорема о равенстве числа векторов в двух максимальных линейно независимых подсистемах векторов.
- •14. Вычисление ранга матрицы методом окаймляющих миноров. Метод окаймляющих миноров
- •15. Вычисление ранга матрицы методом элементарных преобразований.
- •II. Метод элементарных преобразований
- •16. Теорема Кронекера-Капелли. Решение систем на основе теоремы Кронекера-Капелли.
- •17. Однородная система линейных уравнений. Свойства ее решений.
- •18. Фундаментальная система решений однородной системы линейных уравнений и теорема о числе решений в ее составе.
- •19. Связь решений линейной неоднородной и соответствующей ей однородной систем.
- •20. Метод Гаусса решения линейных уравнений.
- •§ 3. Декартова система координат в пространстве
- •§ 1. Декартова система координат на плоскости
- •22. Полярные координаты на плоскости и их связь с декартовыми прямоугольными координатами.
- •§ 2. Полярная система координат на плоскости
- •23. Понятие свободного вектора. Теорема о проекции вектора на ось.
- •Свободный вектор
- •24. Координаты вектора и их вычисление по координатам его начала и конца. Направляющие косинусы.
- •25. Длина вектора и формула для вычисления расстояния между двумя точками пространства.
- •1.6. Расстояние между двумя точками
- •26. Линейные операции над векторами. Линейные операции над векторами
- •27. Основные теоремы о проекциях векторов.
- •28. Разложение векторов на компоненты.
- •29. Скалярное произведение векторов и его свойства.
- •Геометрический смысл скалярного произведения векторов
- •Алгебраические свойства скалярного произведения
- •Геометрические свойства скалярного произведения
- •30. Векторное произведение векторов и его свойства.
- •Алгебраические свойства векторного произведения
- •Геометрические свойства векторного произведения
- •Выражение векторного произведения через координаты векторов
- •31. Смешанное произведение векторов и его свойства.
- •1.16. Смешанное произведение векторов и его свойства
- •Геометрические свойства смешанного произведения
- •Алгебраические свойства смешанного произведения
- •32. Общее уравнение прямой на плоскости.
- •33. Уравнение прямой в отрезках.
- •34. Нормальное уравнение прямой. Вычисление расстояния от точки до прямой на плоскости. Общее уравнение прямой
- •35. Общее уравнение плоскости.
- •36. Уравнение плоскости в отрезках.
- •37. Нормальное уравнение плоскости, Расстояние от точки до плоскости.
- •38. Канонические уравнения прямой.
- •39. Эллипс: уравнение, общий вид и свойства кривой.
1.6. Расстояние между двумя точками
Если нам известны координаты точек (естественно, в заданной системе координат), то однозначно известно их положение. Поэтому можно найти любые геометрические характеристики их взаимного расположения. Получим формулы, позволяющие по известным координатам двух точек вычислить расстояние между ними. В простейшем случае, когда две точки А1 и А2 находятся на одной оси, расстояние между ними определяется формулой
s = |x2 − x1|, (3)
где х1, х2 − координаты точек А1 и А2 соответственно. Очевидно, что расстояние от А1 до А2 равно расстоянию от А2 до А1, что и привело у к тому, что в формуле (3) появился знак модуля числа. Пусть на плоскости задана система координат ХОY, в которой координаты точки А1 равны х1 и у1, а координаты точки А2, соответственно, равны х2 и у2 (рис. 8).
рис. 8
В прямоугольном треугольнике А1А2В длина стороны А2В равна |х2 − х1|, а длина стороны А1В = |у2 − у1|, поэтому расстояние между точками А1 и А2 можно найти по теореме Пифагора:
s = √{(x2 − x1)2 + (y2 − y1)2}. (4)
26. Линейные операции над векторами. Линейные операции над векторами
Сложение векторов
Пусть даны два вектора и . Приложим вектор к точке (концу вектора ) и получим вектор (рис.1.7,а; здесь и далее равные векторы отмечены одинаковыми засечками). Вектор называется суммой векторов и и обозначается . Это нахождение суммы называется правилом треугольника.
Сумму двух неколлинеарных векторов и можно найти по правилу параллелограмма. Для этого откладываем от любой точки векторы и , а затем строим параллелограмм (рис. 1.7,6). Диагональ параллелограмма определяет сумму: .
Для нахождения суммы нескольких векторов можно построить ломаную из равных им векторов. Тогда замыкающий вектор, соединяющий начало первого вектора ломаной с концом последнего ее вектора, равен сумме всех векторов ломаной. На рис.1.7,в изображена сумма четырех векторов . Таким способом (правило ломаной) можно сложить любое конечное число векторов. Заметим, что сумма векторов не зависит от точек приложения слагаемых и от порядка суммирования. Например, "выстраивая цепочку" векторов для суммы в виде , получим вектор, равный вектору . Если ломаная получилась замкнутой, то сумма равна нулевому вектору.
Вычитание векторов
Вектор называется противоположным вектору , если их сумма равна нулевому вектору: . Противоположный вектор имеет длину , коллинеарен и противоположно направлен вектору (рис.1.8,а,б). Нулевой вектор является противоположным самому себе.
Разностью векторов и называется сумма вектора с вектором , противоположным вектору :
Для нахождения разности векторов и приложим к произвольной точке векторы , а также вектор , противоположный вектору (рис.1.9,а). Искомую разность находим по правилу параллелограмма:
Для нахождения разности проще использовать правило треугольника (рис. 1.9,6). Для этого прикладываем к произвольной точке векторы . Вектор при этом равен искомой разности .
Вычитание векторов — действие, обратное сложению — можно определить также следующим образом: разностью векторов и называется такой вектор , который в сумме с вектором дает вектор (рис.1.9,в), т.е. разность — это решение уравнения .
Пример 1.2. Для векторов на рис. 1.6 найти следующие суммы и разности:
Решение. Учитывая равенство , получаем по правилу треугольника .
Поскольку и , то .
По правилу параллелограмма .
Так как и , находим
Умножение вектора на число
Произведением ненулевого вектора а на действительное число называется вектор , удовлетворяющий условиям:
1) длина вектора равна , т.е. ;
2) векторы и коллинеарные ;
3) векторы и одинаково направлены, если , и противоположно направлены, если .
Произведение нулевого вектора на любое число считается (по определению) нулевым вектором: ; произведение любого вектора на число нуль также считается нулевым вектором: . Из определения произведения следует, что:
а) при умножении на единицу вектор не изменяется: ;
б) при умножении вектора на получается противоположный вектор: ;
в) деление вектора на отличное от нуля число сводится к его умножению на число , обратное .
г) при делении ненулевого вектора на его длину, т.е. при умножении на число получаем единичный вектор, одинаково направленный с вектором .
Действительно, длина вектора равна единице: .
Вектор коллинеарен и одинаково направлен с вектором , так как ;
д) при умножении единичного вектора на число получаем коллинеарный ему вектор, длина которого равна .
На рис.1.10 изображены векторы, получающиеся в результате умножения данного вектора на и , а также противоположный вектор .
Свойства линейных операций над векторами
Сложение векторов и умножение вектора на число называются линейными операциями над векторами. Для любых векторов и любых действительных чисел справедливы равенства:
Свойства 1, 2 выражают коммутативность и ассоциативность операции сложения векторов, свойство 5 — ассоциативность операции умножения на число, свойства 6,7 — законы дистрибутивности, свойство 8 называется унитарностью.