
- •1. Классификация тэс на органическом топливе. Технологическая схема паротурбинной электростанции.
- •2. Основные характеристики парогенераторов тэс, работающей на органическом топливе. Парогенераторы барабанного и прямоточного типа. Принцип работы парогенераторов.
- •Описание схемы работы парогенератора барабанного типа
- •3. Классификация и состав топлива. Технические характеристики топлива. Условное топливо и его теплота сгорания рабочей массы. Тепловой эквивалент.
- •4. Эффективность использования топлива. Потери тепла в парогенераторе. Кпд парогенератора по прямому и обратному балансу.
- •5. Классификация паровых турбин. Принцип работы. Основные конструктивные элементы. Основное назначение турбины
- •По назначению:
- •По параметрам пара:
- •Система кпд паротурбинных установок.
- •Определение полного и удельного расходов пара и теплоты для паротурбинной установки типа «к».
- •Многоступенчатые турбины, основные преимущества. Изображение процесса расширения пара в турбине в j, s - диаграмме. Определение мощности турбины через теплоперепад.
- •Определение расхода пара при переменной нагрузке для турбин без отборов и с отборами.
- •Теплофикационные турбины и их классификация. Особенности и область применения. Изображение процесса расширения пара в турбине в I, s - диаграмме.
- •Тепловой баланс подогревателя высокого давления:
- •Восполнение потерь пара и воды на тэс
- •Химический метод подготовки добавочной воды
- •Т ермический метод обессоливания добавочной воды
- •Деаэраторы электростанций
- •Типы деаэраторов.
- •Уравнение теплового баланса
- •34 Очистка дымовых газов. Аппараты для очистки. Принципы работы и эффективность. Роль дымовых труб
- •Очистка дымовых газов.
- •35. Кпд кэс, в том числе и через условное топливо. Полные и удельные расходы пара, теплоты и топлива на кэс без промперегрева
- •36 Расходы пара, теплоты и топлива на кэс с промперегревом. Кпд такой кэс
- •37 Кпд тэц по производству электроэнергии и отпуску теплоты, в том числе через условное топливо
- •39. Классификация аэс по числу Конторов. Принципиальные схемы. Преимущества и недостатки.
- •40. Классификация реакторов аэс. Физические основы действия реактора
- •Схемы аккумулирования гидроэнергии с помощью гаэс
- •Классификация гидротурбин. Основные элементы проточного тракта реактивных гидротурбин. Кпд гидротурбин различных типов
- •Плотины гэс, их назначение и классификация
- •Водохранилище. Регулирование речного стока. Цикл регулирования. Суточное, недельное, месячное, годовое и многолетнее регулирование.
- •Режимы работы гэс в энергосистеме
- •Парогазовые установки (пгу).
Режимы работы гэс в энергосистеме
Режим работы ГЭС в энергосистеме определяется, прежде всего, водностью рассматриваемого периода и условий достижения в системе наилучших экономических показателей.
ГЭС без регулирования.
Объем водохранилища, которое имеет ГЭС, не позволяет осуществить даже суточное регулирование, следовательно, ГЭС работает в режиме водотока. Поэтому мощность подобных ГЭС в любой момент времени определяется значениями бытовых расходов. ГЭС без регулирования работает в базовой части графика нагрузки.
ГЭС с суточным регулированием.
Ее целесообразно размещать в пиковой части графика нагрузки данной системы.
ГЭС с годичным регулированием.
Здесь ГЭС необходимо размещать в зависимости от периода сработки и от периода наполнения. В периоды сработки такую ГЭС целесообразно размещать в пиковой части графика нагрузки. Во время заполнения хранилища такую ГЭС можно размещать как в пиковой, так и в базовой части, все зависит от полезного объема водохранилища. Чем меньше полезный объем водохранилища, тем больше ее роль для покрытия базы. И чем Польше полезный объем водохранилища, тем целесообразнее ее применять в пиковой части графика нагрузки.
ГЭС с многолетним регулированием.
Одновременно может пополнять как суточное, так и годичное регулирование. В общем случае ее место в верхней части графика нагрузки. И только в многоводные периоды, а также, чтобы не делать холостые сбросы ГЭС может опускаться в базовую часть графика нагрузки.
Схема ГТУ открытого типа. Основные элементы, принцип работы, область применения. Термический КПД ГТУ. Изображение идеального и реального циклов ГТУ открытого типа в I,S - диаграмме.
Принцип работы газовой турбины аналогичен принципу работы паровой турбины и конструктивно они примерно такие же. ГТУ могут быть открытого и закрытого типа. На ГТУ открытого типа используют газ и жидкое топливо, на ГТУ закрытого типа используют любой газ и тепло передается через стенку.
ГТУ открытого типа.
Основное оборудование ГТУ открытого типа:
- газовые турбины;
- воздушный компрессор;
- электрогенератор.
Рисунок 83.
ВК – воздушный компрессор, КСГ – камера сгорания, ГТ – газовая турбина.
Воздух поступает в воздушный компрессор, сжимается, повышается давление; с повышенным давлением поступает в камеру сгорания, где происходит сгорание топлива. Продукты сгорания идут на лопатки газовой турбины, здесь происходит превращение тепловой энергии в механическую. Компрессор находится на одном валу с турбиной. 50-60% вырабатываемой мощности турбиной потребляет компрессор, привод компрессора. Воздух забирает часть тепла продуктов сгорания в регенераторе.
ГТ – 100 – 750, где число 100 означает 100 МВт полезной мощности (электрической мощности в данном случае), а 750 – температура продуктов сгорания перед турбиной.
Рисунок 84. Идеальный цикл ГТУ. Цикл Брайтона.
Рисунок 85. Реальный цикл.
2а – 3 подвод тепла
4а – 1 отвод тепла
1 - 2а - 3 – 4а – 1 полезная работа
Методы повышения КПД ГТУ. Основные преимущества ГТУ по сравнению с ПТУ.
Эффективность ГТУ.
ηГТУ = [αTад. ∙ ηoi ∙ ηм – αкад / (ηкад ∙ ηм)] / Qподв ∙ ηксг ∙ ηг
абсолютный электрический КТД ГТУ
Qподв – подведенное тепло, ηксг – КПД камеры сгорания.
Рисунок 86.
Способы увеличения эффективности ГТУ
осуществление регенерации
Теоретически степень регенерации может изменяться от 0 до 1, а практически до 0,7.
σ = 0 ÷ 1, а практически σ = 0 ÷ 0,7
регенерация равна нулю, следовательно, регенерации нет.
2. промежуточный подвод и отвод тепла
Рисунок 87.
Рисунок 88.
Рисунок 89.
Процесс с изотермическим подводом и отводом тепла, при бесконечном подводе пи отводе тепла + регенерация =Цикл Карно.
Оценка КПД.
КПД компрессора адиабатичекий изменяется 0,75 ÷ 0,85. КПД турбины адиабатический выше, чем у паровой турбины, 0,85 ÷ 0,9. ηмех = 0,97 ÷ 0,98
Тепловые схемы и элементы парогазовых установок. Основы повышения КПДПГУ.
ПГУ с высоконапорным парогенератором.