Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вопросы по механике.doc
Скачиваний:
77
Добавлен:
17.04.2019
Размер:
560.13 Кб
Скачать

Ускорение и его составляющие

В случае неравномерного движения важно знать, как быстро изменяется скорость с течением времени. Физической величиной, характеризующей быстроту изменения скорости по модулю и направлению, является ускорение.

Рассмотрим плоское движение, т.е. движение, при котором все участки траектории точки лежат в одной плоскости. Пусть вектор v задает скорость точки А в момент времени t. За время t движущаяся точка перешла в положение В и приобрела скорость, отличную от v как по модулю, так и направлению и равную v1 = v + v. Перенесем вектор v1 в точку А и найдем v (рис. 4).

Средним ускорением неравномерного движения в интервале от t до t + t называется векторная величина, равная отношению изменения скорости v к интервалу вре­мени t

Мгновенным ускорением а (ускорением) материальной точки в момент време­ни t будет предел среднего ускорения:

Таким образом, ускорение a есть векторная величина, равная первой производной скорости по времени.

Разложим вектор v на две составляющие. Для этого из точки А (рис. 4) по направлению скорости v отложим вектор , по модулю равный v1. Очевидно, что вектор , равный , определяет изменение скорости за время t по моду­лю: . Вторая же составляющая вектора v характеризует изменение ско­рости за время t по направлению.

  1. Тангенциальное и нормальное ускорение.

Тангенциа́льное ускоре́ние — компонента ускорения, направленная по касательной к траектории движения. Совпадает с направлением вектора скорости при ускоренном движении и противоположно направлено при замедленном. Характеризует изменение модуля скорости. Обозначается обычно или (, итд в соответствии с тем, какая буква выбрана для обозначения ускорения вообще в данном тексте).

Иногда под тангенциальным ускорением понимают проекцию вектора тангенциального ускорения — как он определен выше — на единичный вектор касательной к траектории, что совпадает с проекцией (полного) вектора ускорения на единичный вектор касательной то есть соответствующий коэффициент разложения по сопутствующему базису. В этом случае используется не векторное обозначение, а «скалярное» — как обычно для проекции или координаты вектора — .

Величину тангенциального ускорения - в смысле проекции вектора ускорения на единичный касательный вектор траектории - можно выразить так:

где - путевая скорость вдоль траектории, совпадающая с абсолютной величиной мгновенной скорости в данный момент.

Если использовать для единичного касательного вектора обозначение , то можно записать тангенциальное ускорение в векторном виде:

Вывод

Выражение для тангенциального ускорения можно найти, продифференцировав по времени вектор скорости, представленный в виде через единичный вектор касательной :

где первое слагаемое — тангенциальное ускорение, а второе — нормальное ускорение.

Здесь использовано обозначение для единичного вектора нормали к траектории и - для текущей длины траектории ( ); в последнем переходе также использовано очевидное

и, из геометрических соображений,

Центростремительное ускорение(нормальное) — часть полного ускорения точки, обусловленного кривизной траектории и скоростью движения по ней материальной точки. Такое ускорение направлено к центру кривизны траектории, чем и обусловлен термин. Формально и по существу термин центростремительное ускорение в целом совпадает с термином нормальное ускорение, различаясь скорее лишь стилистически (иногда исторически).

Особенно часто о центростремительном ускорении говорят, когда речь идет о равномерном движении по окружности или при движении, более или менее приближенном к этому частному случаю.

Элементарная формула

или

где — нормальное (центростремительное) ускорение, — (мгновенная) линейная скорость движения по траектории, — (мгновенная) угловая скорость этого движения относительно центра кривизны траектории, — радиус кривизны траектории в данной точке. (Cвязь между первой формулой и второй очевидна, учитывая ).

Выражения выше включают абсолютные величины. Их легко записать в векторном виде, домножив на — единичный вектор от центра кривизны траектории к данной ее точки:

Эти формулы равно применимы к случаю движения с постоянной (по абсолютной величине) скоростью, так и к произвольному случаю. Однако во втором надо иметь в виду, что центростремительное ускорение не есть полный вектор ускорения, а лишь его составляющая, перпендикулярная траектории (или, что то же, перпендикулярная вектору мгновенной скорости); в полный же вектор ускорения тогда входит еще и тангенциальная составляющая (тангенциальное ускорение) , по направлению совпадающее с касательной к траектории (или, что то же, с мгновенной скоростью).

вывод

То, что разложение вектора ускорения на компоненты — одну вдоль касательного к траектории вектора (тангенциальное ускорение) и другую ортогональную ему (нормальное ускорение) — может быть удобным и полезным, довольно очевидно само по себе. Это усугубляется тем, что при движении с постоянной по величине скоростью тангенциальная составляющая будет равной нулю, то есть в этом важном частном случае остается только нормальная составляющая. Кроме того, как можно увидеть ниже, каждая из этих составляющих имеет ярко выраженные собственные свойства и структуру, и нормальное ускорение содержит в структуре своей формулы достаточно важное и нетривиальное геометрическое наполнение. Не говоря уже о важном частном случае движения по окружности (который, к тому же, практически без изменения может быть обобщен и на общий случай).

Формальный вывод

Разложение ускорения на тангенциальную и нормальную компоненты (вторая из которых и есть центростремительное или нормальное ускорение) можно найти, продифференцировав по времени вектор скорости, представленнный в виде через единичный вектор касательной .

Где первое слагаемое — тангенциальное ускорение, а второе — нормальное ускорение.

Здесь использовано обозначение для единичного вектора нормали к траектории и — для

текущей длины траектории ( ); в последнем переходе также использовано очевидное

.

Далее можно просто формально назвать член

нормальным (центростремительным) ускорением. При этом его смысл, смысл входящих в него объектов, а также доказательство того факта, что он действительно ортогонален касательному вектору (то есть что — действительно вектор нормали) — будет следовать из геометрических соображений (впрочем, то, что производная любого вектора постоянной длины по времени перпендикулярна самому этому вектору, — достаточно простой факт; в данном случае мы применяем это утверждение для ).