
- •Линейное перемещение, линейная скорость, линейное ускорение.
- •Ускорение и его составляющие
- •Тангенциальное и нормальное ускорение.
- •Угловое перемещение, угловая скорость, угловое ускорение, их связь
- •Угловая скорость и угловое ускорение
- •Законы Ньютона. Первый закон Ньютона. Масса. Сила
- •Второй закон Ньютона
- •Третий закон Ньютона
- •Импульс, закон сохранения импульса.
- •Центр масс, закон движения центра масс.
- •Работа, мощность, кинетическая энергия.
- •Консервативные силы, потенциальная энергия и их связь, примеры
- •Закон сохранения энергии.
- •Упругий и неупругий удары с точки зрения законов сохранения.
- •Момент инерции, теорема Штейнера.
- •Кинетическая энергия вращения и качения твердого тела.
- •Момент силы относительно точки, момент силы относительно оси.
- •Работа силы при вращении твердого тела, уравнение динамики
- •Момент импульса относительно точки, момент импульса относительно оси, уравнение динамики вращательного движения.
- •Закон сохранения момента импульса, гироскопы, гироскопический эффект, прецессия.
Линейное перемещение, линейная скорость, линейное ускорение.
Перемеще́ние (в кинематике) — изменение местоположения физического тела в пространстве относительно выбранной системы отсчёта. Также перемещением называют вектор, характеризующий это изменение. Обладает свойством аддитивности. Длина отрезка — это модуль перемещения, измеряется в метрах (СИ).
Можно определить перемещение, как изменение радиус-вектора точки: .
Модуль перемещения совпадает с пройденным путём в том и только в том случае, если при движении направление перемещения не изменяется. При этом траекторией будет отрезок прямой. В любом другом случае, например, при криволинейном движении, из неравенства треугольника следует, что путь строго больше.
Вектор r = r — r0, проведенный из начального положения движущейся точки в положение ее в данный момент времени (приращение радиуса-вектора точки за рассматриваемый промежуток времени), называется перемещением.
При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и модуль перемещения |r| равен пройденному пути s. Линейная скорость тела в механике
Скорость
Для характеристики движения материальной точки вводится векторная величина — скорость, которой определяется как быстрота движения, так и его направление в данный момент времени.
Пусть материальная точка движется по какой-либо криволинейной траектории так, что в момент времени t ей соответствует радиус-вектор r0 (рис. 3). В течение малого промежутка времени t точка пройдет путь s и получит элементарное (бесконечно малое) перемещение r.
Вектором средней скорости <v> называется отношение приращения r радиуса-вектора точки к промежутку времени t:
(2.1)
Направление вектора средней скорости совпадает с направлением r. При неограниченном уменьшении t средняя скорость стремится к предельному значению, которое называется мгновенной скоростью v:
Мгновенная скорость v, таким образом, есть векторная величина, равная первой производной радиуса-вектора движущейся точки по времени. Так как секущая в пределе совпадает с касательной, то вектор скорости v направлен по касательной к траектории в сторону движения (рис. 3). По мере уменьшения t путь s все больше будет приближаться к |r|, поэтому модуль мгновенной скорости
Таким образом, модуль мгновенной скорости равен первой производной пути по времени:
(2.2)
При неравномерном движении — модуль мгновенной скорости с течением времени изменяется. В данном случае пользуются скалярной величиной v — средней скоростью неравномерного движения:
Из рис. 3 вытекает, что v> |v|, так как s > |r|, и только в случае прямолинейного движения
Если выражение ds = vdt (см. формулу (2.2)) проинтегрировать по времени в пределах от t до t + t, то найдем длину пути, пройденного точкой за время t:
(2.3)
В случае равномерного движения числовое значение мгновенной скорости постоянно; тогда выражение (2.3) примет вид
Длина пути, пройденного точкой за промежуток времени от t1 до t2, дается интегралом