
- •1. Особливості статистики як самостійної суспільної науки.
- •2. Завдання і предмет статистики. Основні категорії статистики.
- •3. Етапи статистичного дослідження.
- •4. Суть, джерела та організаційні форми статистичного спостереження.
- •5. Програмно-методологічні та організаційні питання як основа плану статистичного спостереження.
- •8. Завдання та види статистичних групувань.
- •6. Види і способи проведення статистичного спостереження.
- •7. Помилки спостереження та методи контролю отриманих даних.
- •9. Структурні, типологічні, аналітичні групування. Прості та комбінаційні групування.
- •10. Види і основні питання методології побудови статистичних групувань.
- •11. Елементи статистичної таблиці. Види статистичних таблиць і правила їх побудови.
- •12. Статистичні графіки, основні елементи їх побудови.
- •13. Суть, значення та види статистичних показників. Абсолютні статистичні величини, одиниці їх вимірювання, особливості використання.
- •14. Відносні величини, їх види за аналітичною функцією, економічний зміст, способи обчислення та одиниці вимірювання.
- •15. Графічне зображення абсолютних і відносних величин.
- •16. Графічне зображення структури явищ і структурних зрушень.
- •18. Середня арифметична, основні її властивості.
- •17. Середні величини у статистиці, їх види, умови наукового застосування та особливості обчислення
- •19. Умови використання ріізних видів середніх величин та методика їх визначення.
- •20. Види рядів розподілу, частотний їх аналіз, графічне зображення.
- •21. Характеристики центру розподілу: середня, мода, медіана, їх взаємозв’язок.
- •23.Вимірювання варіації ознак - абсолютні міри варіації: розмах варіації, середнє лінійне та середнє квадратичне відхилення.
- •22. Графічні методи визначення структурних середніх(моди, медіани).
- •25. Види дисперсій. Правило декомпозиції (розкладання) дисперсій.
- •26. Характеристики форми розподілу: коефіцієнти асиметрії та ексцесу.
- •28. Аналіз нерівномірності розподілу - коефіцієнти локалізації та концентрації.
- •27.Статистичні характеристики диференціації та концентрації.
- •30.Оцінювання інтенсивності структурних зрушень: лінійний та квадратичний коефіцієнти структурних зрушень.
- •31. Поняття, складові елементи та об’єктивні умови для побудови рядів динаміки (часових рядів), їх види та особливості.
- •32. Абсолютні та відносні характеристики інтенсивності динаміки.
- •33. Середня абсолютна та відносна швидкість розвитку. Оцінка прискорення (уповільнення) розвитку. Порівняльний аналіз динамічних рядів.
- •34. Суть тенденції розвитку, методи виявлення та аналізу.
- •35. Використання трендових рівнянь при виявленні тенденції розвитку.
- •36. Інтерполяція та екстраполяція на основі часових (динамічних) рядів.
- •37. Сезонні коливання, методи їх вимірювання.
- •38. Суть та класифікація індексів, їх роль в аналізі соціально-економічних явищ.
- •39. Методологічні принципи побудови зведених індексів - агрегатний індекс як основна форма загального індексу.
- •40. Методологічні принципи побудови зведених індексів - середньозважені індекси.
- •41. Індексний метод економічного аналізу кількісного впливу чинників на наслідок.
- •42. Дослідження динаміки середніх величин індексним методом: індекси середніх величин, їх взаємозв’язок.
- •Індекс структурних зрушень (Іd ) показує зміну середньої за рахунок змін у структурі сукупності:
- •43. Оцінювання щільності кореляційного зв’язку за даними аналітичного групування. Кореляційне відношення.
- •44. Регресійний аналіз взаємозв’язку, оцінювання щільності та перевірка істотності кореляційного зв’язку на основі рівняння регресії.
- •45. Непараметричні методи дослідження взаємозв’язків між ознаками.
- •46. Сутність та переваги вибіркового методу спостереження, причини й умови його застосування.
- •47. Вибіркові оцінки і похибки репрезентативності.
- •48. Довірчі межі середньої і частки.
- •49. Основні способи формування вибіркових сукупностей, що забезпечують репрезентативність вибіркових оцінок.
- •50. Визначення мінімально достатнього обсягу вибірки. Поширення результатів вибіркового обстеження на генеральну сукупність.
19. Умови використання ріізних видів середніх величин та методика їх визначення.
Середня величина - це узагальнююча характеристика сукупності явищ за ознакою, що варіює, тобто це узагальнюючий показник, який характеризує типовий рівень ознаки, що варіює, в розрахунку на одиницю однорідної сукупності.
Найпростішим
видом середніх величин є середньоарифметична
проста
де п - кількість одиниць сукупності,
х — варіююча ознака.
Вона застосовується в тому випадку, коли варіююча арифметична ознака має різні значення і є незгруповані дані.
Якщо
ми маємо згруповані дані або варіююча
ознака зустрічається декілька разів,
то застосовується середня арифметична
зважена
де х - варіююча ознака,
f— абсолютна кількість повторення варіюючої ознаки.
Зважена середня арифметична використовується також і тоді, коли варіанти виражені не в дискретній формі, а у вигляді інтервалів, тобто для інтервальних варіаційних рядів.
У деяких
випадках вихідна база розрахунку
середньої приводиться не до середньої
арифметичної, а до іншої форми - середньої
гармонічної
За своїми властивостями середня гармонічна може застосовуватися тоді, коли загальний обсяг ознаки формується як сума зворотних значень варіант. Таким чином, середня гармонічна - це обернена величина до середньої арифметичної, розрахована з обернених величин усереднюваних варіюючих ознак.
Gрипустімо, що один робітник працював 1 годину, а другий - З години. Тоді середні витрати робочого часу визначимо за формулою:
Ця середня гармонічна зважена застосовується в тих випадках, коли невідомий знаменник вихідної бази.
В економічній практиці виникає потреба в використанні середньої геометричної.
Середня
геометрична
розраховується
за формулою:
Цей
вид середньої будемо розглядати при
аналізі рядів динаміки. При розрахунку
середніх величин необхідно проводити
логічний контроль їх достовірності.
При перевірці слід звернути увагу на
наступне: по-перше, значення середньої
величини не повинно виходити за межі
мінімального і максимального значень
ознаки; по-друге, значення середньої
величини ближче до того значення ознаки,
якому відповідає більша вага середньої.
20. Види рядів розподілу, частотний їх аналіз, графічне зображення.
Статистична сукупність формується під впливом причин та умов, з одного боку — типових, спільних для всіх елементів сукупності, а з іншого — випадкових, індивідуальних. Ці чинники взаємозв'язані, а їх спільна взаємодія визначає як індивідуальні значення ознак, так і розподіл останніх у межах сукупності. Характерні властивості структури статистичної сукупності відбиваються в рядах розподілу.
Ряд розподілу складається з двох елементів: варіант — значень групувальної ознаки xj та частот (часток) fj. Саме у співвідношенні варіант і частот виявляється закономірність розподілу.
Залежно від статистичної природи варіант ряди розподілу поділяються на атрибутивні та варіаційні. Частотними характеристиками будь-якого ряду є абсолютна чисельність j-ї групи — частота fj та відносна частота j-ї групи — частка dі. Додатковою характеристикою варіаційних рядів є кумулятивна частота (частка), що являє собою результат послідовного об'єднання груп і підсумовування відповідних їм частот (часток). Кумулятивна частота Sfj (частка Sdj) характеризує обсяг сукупності зі значеннями варіант, які не перевищують xj .
Варіаційний ряд може бути дискретним або інтервальним. Якщо варіаційний ряд інтервальний з нерівними інтервалами, то його частотні характеристики непорівнянні. Тоді, аналізуючи розподіл, використовують щільність частоти (частки) на одиницю інтервалу.
Отже, поглиблений аналіз закономірностей розподілу передбачає характеристику зазначених особливостей сукупності, зокрема:
а) визначення типового рівня ознаки, який є центром тяжіння;
б) вимірювання варіації ознаки, ступеня згрупованості індивідуальних значень ознаки навколо центра розподілу;
в) оцінювання особливостей варіації, ступеня її відхилення від симетрії;
г) оцінювання нерівномірності розподілу значень ознаки між окремими елементами сукупності, тобто ступінь їх концентрації.
Базою аналізу закономірностей розподілу є варіаційний ряд — дискретний або інтервальний — з рівними інтервалами.