 
        
        - •Материальная точка. Механическое движение. Связь кинематических переменных для простейших видов движения
- •3.Основные виды сил в механике и их природа
- •5. Импульс тела и системы тел. Центр масс. Закон сохранения импульса.
- •7. Понятие об уравнении состояния. Идеальный газ, его основные приближения и уравнение состояния. Обобщенное уравнение состояния системы
- •Основное уравнение молекулярно - кинетической теории газа и его роль.
- •Изопроцессы в идеальном газе и их графики
- •10.Термодинамический подход. Простейшие термодинамические параметры. Первое начало термодинамики и изопроцессы.
- •Математическое выражение первого закона термодинамики для различных процессов
- •11.Тепловые двигатели. Цикл Карно и двигатель Карно.
- •12.Второе начало термодинамики и его статистическая природа.
- •Электростатика. Закон Кулона. Силовые линии электрического поля и их свойства. Напряжённость.
- •Свойства силовых линий электрического поля
- •14.Напряжённость электрического поля. Потенциал и его связь с напряжённостью
- •Энергия взаимодействия электрических зарядов
- •16.Законы Ома в интегральной и дифференциальной форме. Понятие эдс, условие поддержания постоянного тока.
- •17. Энергетика тока, закон Джоуля - Ленца в интегральной и дифференциальной форме. Ток в разных средах.
- •18.Типы соединения проводников. Простейшие электрические цепи. Правила Кирхгофа.
- •Резистор
- •Последовательное соединение
- •Первый закон
- •Второй закон
- •19.Магнитное поле и его природа. Индукция и напряжённость. Свойства линий индукции. Магнитное поле прямого тока.
- •Вычисление
- •20.Сила Ампера. Сила Лоренца. Движение заряда в магнитном поле.
- •Лоренца сила
- •Явление электрической и магнитной индукции. Элементарные представления об уравнениях Максвелла.
- •Явление магнитной индукции.
- •22.Поведение механической системы в окрестности устойчивого равновесия.
- •Устойчивое равновесие
- •23. Простейшие колебательные системы, общие методы определения собственной частоты. Сложение колебаний. Метод векторных диаграмм. Простейшие колебательные системы.
- •Пружинный маятник.
- •Математический маятник.
- •Математический маятник с пружиной.
- •Векторная диаграмма
- •24.Затухающие колебания. Вынужденные колебания. Резонанс. Автоколебательные системы.
- •Автоколебательные системы
- •25.Упругие волны, их характеристики. Понятие упругой среды. Типы волн в различных средах
- •Классификация
- •Упругие волны в твёрдых телах
- •Энергия и поток энергии в волне. Интерференция механических волн, понятие интерференционной картины. Интерференция механических волн
- •Интерференция света в тонких плёнках
- •Электромагнитные колебания, их характеристики. Колебательный контур. Электромеханические аналогии.
- •Электромеханические аналогии уравнения Лагранжа-Максвелла
- •Затухающие и вынужденные электромагнитные колебания.
- •29.Переменный и электрический ток. Импеданс и его виды. Резонанс в электрических цепях.
- •30.Электромагнитные волны, их характеристики. Энергия и поток энергии в электромагнитной волне.
- •31.Скорость света. Геометрическая оптика. Принцип Ферма. Отражение и преломление света.
- •Линзы. Простейшие оптические системы.
- •33.Волновая оптика. Интерференция света и её применение.
- •34.Дифракция света, дифракционная решётка.
- •35. Квантовая оптика. Фотоэффект. Фотоны
- •Законы внешнего фотоэффекта
- •Вентильный фотоэффект
- •Принцип неопределённости. Одномерное движение. Элементарное представление о волновой функции и уравнении Шредингера.
- •Боровский атом водорода и его квантование. Боровские уровни и спектр атома водорода. Полуклассическая теория Бора
- •38. Реальный атом и его квантовое число. Таблица Менделеева.
- •Структура периодической системы
- •Значение периодической системы
- •Устойчивость атомных ядер
- •Применение изотопов человеком
- •40.Ядерные реакции. Радиоактивный распад и его виды. Закон радиоактивного распада. Ядерный синтез.
- •Гамма-распад (изомерный переход)
- •Ядерные силы и реакции.
12.Второе начало термодинамики и его статистическая природа.
второе начало термодинамики можно сформулировать как закон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимый процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает. Можно дать более краткую формулировку второго начала термодинамики: в процессах, происходящих в замкнутой системе, энтропия не убывает. Здесь существенно, что речь идет о замкнутых системах, так как в незамкнутых системах энтропия может вести себя любым образом (убывать, возрастать, оставаться постоянной). Кроме того, отметим еще раз, что энтропия остается постоянной в замкнутой системе только при обратимых процессах. При необратимых процессах в замкнутой системе энтропия всегда возрастает. )
1 по Кельвину: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу;
2) по Клаузиусу: невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому.
Формула Больцмана S=k•lnW дает объяснение постулируемое вторым началом термодинамики возрастанию энтропии в замкнутой системе при необратимых процессах: возрастание энтропии означает переход системы из менее вероятных в более вероятные состояния. Значит, формула Больцмана дает статистическое толкование второго начала термодинамики. Являясь статистическим законом, оно описывает закономерности хаотического движения огромного числа частиц, которые составляющих замкнутую систему.
- Электростатика. Закон Кулона. Силовые линии электрического поля и их свойства. Напряжённость.
Электростатика — раздел физики изучающий электростатическое поле и электрические заряды. Между одноимённо заряженными телами возникает электростатическое (или кулоновское) отталкивание, а между разноимённо заряженными — электростатическое притяжение. Явление отталкивания одноименных зарядов лежит в основе создания электроскопа — прибора для обнаружения электрических зарядов. В основе электростатики лежит закон Кулона. Этот закон описывает взаимодействие точечных электрических зарядов.
Закон: Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме направлена вдоль прямой, соединяющей заряды, прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними
Важно отметить, что для того, чтобы закон был верен, необходимы:
- точечность зарядов — то есть расстояние между заряженными телами много больше их размеров — впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии; 
- их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд; 
- взаимодействие в вакууме. 
F=k*|q1|*|q2|/r2
 —
сила,
с которой заряд 1 действует на заряд 2;
q1,q2 —
величина зарядов;
 —
сила,
с которой заряд 1 действует на заряд 2;
q1,q2 —
величина зарядов; 
 —
радиус-вектор (вектор, направленный от
заряда 1 к заряду 2, и равный, по модулю,
расстоянию между зарядами — r12);
k —
коэффициент пропорциональности. Таким
образом, закон указывает, что одноимённые
заряды отталкиваются (а разноимённые —
притягиваются).
 —
радиус-вектор (вектор, направленный от
заряда 1 к заряду 2, и равный, по модулю,
расстоянию между зарядами — r12);
k —
коэффициент пропорциональности. Таким
образом, закон указывает, что одноимённые
заряды отталкиваются (а разноимённые —
притягиваются).
(k=9*109 H*м2/Кл2 )
 
ε0 ≈ 8,854187817×10−12 Ф/м
Электрическое поле изображают с помощью силовых линий.
Силовые линии указывают направление силы, действующей на положительный заряд в данной точке поля.
 
