Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материальная точка.doc
Скачиваний:
125
Добавлен:
16.04.2019
Размер:
1.49 Mб
Скачать

30.Электромагнитные волны, их характеристики. Энергия и поток энергии в электромагнитной волне.

Электромагнитные волны – это процесс распространения в пространстве возмущения электр поля изменяющегося во времени.

Источники ЭМВ

  1. Ускоренно движущиеся заряды

  2. Изменяющиеся со временем токи(переменные)

С-ва ЭМВ

1. поперечные волны

2. распространяются прямолинейно со скоростью света в вакууме

3. поглощаются попадая на металл ,и ослабевают в диэлектриках

4. Металлы отражают волны

5. преломляются на диэлектриках

6. обладают дисперсией (радуга, спектр)

7. дифракция (волна огибает препятствие)

8. интерференция (сложение волн в пространстве)

9. поляризация

Характеристики волн:

Поляризация, фронт волны, энергия волны, давление электромагнитной волны, импульс

31.Скорость света. Геометрическая оптика. Принцип Ферма. Отражение и преломление света.

Скорость света в свободном пространстве (вакууме) с, скорость распространения любых электромагнитных волн (в т. ч. световых); одна из фундаментальных физических постоянных, огромная роль которой в современной физике определяется тем, что она представляет собой предельную скорость распространения любых физических воздействий и инвариантна (т. е. не меняется) при переходе от одной системы отсчёта к другой. Никакие сигналы не могут быть переданы со скоростью, большей с, а со скоростью с их можно передать лишь в вакууме. Величина с связывает массу и полную энергию материального тела; через неё выражаются преобразования координат, скоростей и времени при изменении системы отсчёта (Лоренца преобразования); она входит во многие другие соотношения. Под С. с. в среде с' обычно понимают лишь скорость распространения оптического излучения (света); она зависит от преломления показателя среды n, различного, в свою очередь, для разных частот v излучения (дисперсия света); с'(n) = c/n (n). Эта зависимость приводит к отличию групповой скорости от фазовой скорости света в среде, если речь идёт не о монохроматическом свете (для С. с. в вакууме эти две величины совпадают). Экспериментально определяя с', всегда измеряют групповую С. с. либо т. н. скорость сигнала, или скорость передачи энергии, только в некоторых специальных случаях не равную групповой.

Скорость света : 300 000 км/с ; скорость звука : 330 м/с .

Геометри́ческая о́птика — раздел оптики, изучающий законы распространения света в прозрачных средах и принципы построения изображений при прохождении света в оптических системах без учёта его волновых свойств.

В основе геометрической оптики лежат несколько простых эмпирических законов:

  1. Закон прямолинейного распространения света

  2. Закон независимого распространения лучей

  3. Закон отражения света

  4. Закон преломления света (Закон Снелла)

  5. Закон обратимости светового луча. Согласно нему луч света, распространившийся по определённой траектории в одном направлении, повторит свой ход в точности при распространении и в обратном направлении.

Ферма принцип, основной принцип геометрической оптики. Простейшая форма Ф. п. – утверждение, что луч света всегда распространяется в пространстве между двумя точками по тому пути, по которому время его прохождения меньше, чем по любому из всех др. путей, соединяющих эти точки.

Принцип Ферма (принцип наименьшего времени Ферма) в геометрической оптике — постулат, предписывающий лучу света двигаться из начальной точки в конечную точку по пути, минимизирующему (реже - максимизирующему) время движения (или, что то же самое, минимизирующему оптическую длину пути).

При падении параллельного пучка света на гладкую поверхность раздела двух прозрачных изотропных сред часть света отражается обратно, а другая часть проходит во вторую среду, при этом направление пучка света меняется; происходит преломление света.

Угол отражения равен углу падения, а угол преломления связан с углом падения соотношением: где п1 и п2 - показатели преломления сред, и - углы падения и преломления.

Показатели преломления обычных газов (при нормальных условиях) близки к 1, для стекла эта величина порядка от 1,4 до 1,7.

Эффекты отражения и преломления лежат в основе работы всех оптических систем, которые позволяют передавать световую энергию и изображения, фокусировать свет в мощные пучки, разлагать его в спектр.