
- •Материальная точка. Механическое движение. Связь кинематических переменных для простейших видов движения
- •3.Основные виды сил в механике и их природа
- •5. Импульс тела и системы тел. Центр масс. Закон сохранения импульса.
- •7. Понятие об уравнении состояния. Идеальный газ, его основные приближения и уравнение состояния. Обобщенное уравнение состояния системы
- •Основное уравнение молекулярно - кинетической теории газа и его роль.
- •Изопроцессы в идеальном газе и их графики
- •10.Термодинамический подход. Простейшие термодинамические параметры. Первое начало термодинамики и изопроцессы.
- •Математическое выражение первого закона термодинамики для различных процессов
- •11.Тепловые двигатели. Цикл Карно и двигатель Карно.
- •12.Второе начало термодинамики и его статистическая природа.
- •Электростатика. Закон Кулона. Силовые линии электрического поля и их свойства. Напряжённость.
- •Свойства силовых линий электрического поля
- •14.Напряжённость электрического поля. Потенциал и его связь с напряжённостью
- •Энергия взаимодействия электрических зарядов
- •16.Законы Ома в интегральной и дифференциальной форме. Понятие эдс, условие поддержания постоянного тока.
- •17. Энергетика тока, закон Джоуля - Ленца в интегральной и дифференциальной форме. Ток в разных средах.
- •18.Типы соединения проводников. Простейшие электрические цепи. Правила Кирхгофа.
- •Резистор
- •Последовательное соединение
- •Первый закон
- •Второй закон
- •19.Магнитное поле и его природа. Индукция и напряжённость. Свойства линий индукции. Магнитное поле прямого тока.
- •Вычисление
- •20.Сила Ампера. Сила Лоренца. Движение заряда в магнитном поле.
- •Лоренца сила
- •Явление электрической и магнитной индукции. Элементарные представления об уравнениях Максвелла.
- •Явление магнитной индукции.
- •22.Поведение механической системы в окрестности устойчивого равновесия.
- •Устойчивое равновесие
- •23. Простейшие колебательные системы, общие методы определения собственной частоты. Сложение колебаний. Метод векторных диаграмм. Простейшие колебательные системы.
- •Пружинный маятник.
- •Математический маятник.
- •Математический маятник с пружиной.
- •Векторная диаграмма
- •24.Затухающие колебания. Вынужденные колебания. Резонанс. Автоколебательные системы.
- •Автоколебательные системы
- •25.Упругие волны, их характеристики. Понятие упругой среды. Типы волн в различных средах
- •Классификация
- •Упругие волны в твёрдых телах
- •Энергия и поток энергии в волне. Интерференция механических волн, понятие интерференционной картины. Интерференция механических волн
- •Интерференция света в тонких плёнках
- •Электромагнитные колебания, их характеристики. Колебательный контур. Электромеханические аналогии.
- •Электромеханические аналогии уравнения Лагранжа-Максвелла
- •Затухающие и вынужденные электромагнитные колебания.
- •29.Переменный и электрический ток. Импеданс и его виды. Резонанс в электрических цепях.
- •30.Электромагнитные волны, их характеристики. Энергия и поток энергии в электромагнитной волне.
- •31.Скорость света. Геометрическая оптика. Принцип Ферма. Отражение и преломление света.
- •Линзы. Простейшие оптические системы.
- •33.Волновая оптика. Интерференция света и её применение.
- •34.Дифракция света, дифракционная решётка.
- •35. Квантовая оптика. Фотоэффект. Фотоны
- •Законы внешнего фотоэффекта
- •Вентильный фотоэффект
- •Принцип неопределённости. Одномерное движение. Элементарное представление о волновой функции и уравнении Шредингера.
- •Боровский атом водорода и его квантование. Боровские уровни и спектр атома водорода. Полуклассическая теория Бора
- •38. Реальный атом и его квантовое число. Таблица Менделеева.
- •Структура периодической системы
- •Значение периодической системы
- •Устойчивость атомных ядер
- •Применение изотопов человеком
- •40.Ядерные реакции. Радиоактивный распад и его виды. Закон радиоактивного распада. Ядерный синтез.
- •Гамма-распад (изомерный переход)
- •Ядерные силы и реакции.
Гамма-распад (изомерный переход)
Почти все ядра имеют, кроме основного квантового состояния, дискретный набор возбуждённых состояний с большей энергией (исключением являются ядра 1H, 2H, 3H и 3He). Возбуждённые состояния могут заселяться при ядерных реакциях либо радиоактивном распаде других ядер. Большинство возбуждённых состояний имеют очень малые времена жизни (менее наносекунды). Однако существуют и достаточно долгоживущие состояния (чьи времена жизни измеряются микросекундами, сутками или годами), которые называются изомерными, хотя граница между ними и короткоживущими состояниями весьма условна. Изомерные состояния ядер, как правило, распадаются в основное состояние (иногда через несколько промежуточных состояний). При этом излучаются один или несколько гамма-квантов; возбуждение ядра может сниматься также посредством вылета конверсионных электронов из атомной оболочки. Изомерные состояния могут распадаться также и посредством обычных бета- и альфа-распадов.
Закон радиоактивного распада — физический закон, описывающий зависимость интенсивности радиоактивного распада от времени и количества радиоактивных атомов в образце.
Согласно закону рад распада для каждогорадиоакт в-ва существует определенный интервал времени на протяжении которого его активность убывает в 2 раза. Этот интервал называется периодом полураспада(Т). Т - это то вренмя в теч. Которого распадется половина наличного числа радиоактивных атомов. В зависимости от в-ва период полураспада меняется в широких пределах: от миллиардов лет до секунды N = N0.2 - t/T N - число нераспавшихся ядер
Ядерный синтез - это реакция, обратная делению атомов: в последней энергия выделяется за счет расщепления тяжелых ядер на более легкие
ЯДЕРНЫЙ СИНТЕЗ, термоядерный синтез, реакция слияния легких атомных ядер в более тяжелые ядра, происходящая при сверхвысокой температуре и сопровождающаяся выделением огромных количеств энергии. Ядерный синтез – это реакция, обратная делению атомов: в последней энергия выделяется за счет расщепления тяжелых ядер на более легкие
Успешное осуществление реакции синтеза зависит от свойств используемых атомных ядер и возможности получения плотной высокотемпературной плазмы, которая необходима для инициирования реакции.
Ядерные силы и реакции.
Энерговыделение при ядерном синтезе обусловлено действующими внутри ядра чрезвычайно интенсивными силами притяжения; эти силы удерживают вместе входящие в состав ядра протоны и нейтроны. Они очень интенсивны на расстояниях ~10–13 см и чрезвычайно быстро ослабевают с увеличением расстояния. Помимо этих сил, положительно заряженные протоны создают электростатические силы отталкивания. Радиус действия электростатических сил гораздо больше, чем у ядерных, поэтому они начинают преобладать, когда ядра удалены друг от друга