
- •Материальная точка. Механическое движение. Связь кинематических переменных для простейших видов движения
- •3.Основные виды сил в механике и их природа
- •5. Импульс тела и системы тел. Центр масс. Закон сохранения импульса.
- •7. Понятие об уравнении состояния. Идеальный газ, его основные приближения и уравнение состояния. Обобщенное уравнение состояния системы
- •Основное уравнение молекулярно - кинетической теории газа и его роль.
- •Изопроцессы в идеальном газе и их графики
- •10.Термодинамический подход. Простейшие термодинамические параметры. Первое начало термодинамики и изопроцессы.
- •Математическое выражение первого закона термодинамики для различных процессов
- •11.Тепловые двигатели. Цикл Карно и двигатель Карно.
- •12.Второе начало термодинамики и его статистическая природа.
- •Электростатика. Закон Кулона. Силовые линии электрического поля и их свойства. Напряжённость.
- •Свойства силовых линий электрического поля
- •14.Напряжённость электрического поля. Потенциал и его связь с напряжённостью
- •Энергия взаимодействия электрических зарядов
- •16.Законы Ома в интегральной и дифференциальной форме. Понятие эдс, условие поддержания постоянного тока.
- •17. Энергетика тока, закон Джоуля - Ленца в интегральной и дифференциальной форме. Ток в разных средах.
- •18.Типы соединения проводников. Простейшие электрические цепи. Правила Кирхгофа.
- •Резистор
- •Последовательное соединение
- •Первый закон
- •Второй закон
- •19.Магнитное поле и его природа. Индукция и напряжённость. Свойства линий индукции. Магнитное поле прямого тока.
- •Вычисление
- •20.Сила Ампера. Сила Лоренца. Движение заряда в магнитном поле.
- •Лоренца сила
- •Явление электрической и магнитной индукции. Элементарные представления об уравнениях Максвелла.
- •Явление магнитной индукции.
- •22.Поведение механической системы в окрестности устойчивого равновесия.
- •Устойчивое равновесие
- •23. Простейшие колебательные системы, общие методы определения собственной частоты. Сложение колебаний. Метод векторных диаграмм. Простейшие колебательные системы.
- •Пружинный маятник.
- •Математический маятник.
- •Математический маятник с пружиной.
- •Векторная диаграмма
- •24.Затухающие колебания. Вынужденные колебания. Резонанс. Автоколебательные системы.
- •Автоколебательные системы
- •25.Упругие волны, их характеристики. Понятие упругой среды. Типы волн в различных средах
- •Классификация
- •Упругие волны в твёрдых телах
- •Энергия и поток энергии в волне. Интерференция механических волн, понятие интерференционной картины. Интерференция механических волн
- •Интерференция света в тонких плёнках
- •Электромагнитные колебания, их характеристики. Колебательный контур. Электромеханические аналогии.
- •Электромеханические аналогии уравнения Лагранжа-Максвелла
- •Затухающие и вынужденные электромагнитные колебания.
- •29.Переменный и электрический ток. Импеданс и его виды. Резонанс в электрических цепях.
- •30.Электромагнитные волны, их характеристики. Энергия и поток энергии в электромагнитной волне.
- •31.Скорость света. Геометрическая оптика. Принцип Ферма. Отражение и преломление света.
- •Линзы. Простейшие оптические системы.
- •33.Волновая оптика. Интерференция света и её применение.
- •34.Дифракция света, дифракционная решётка.
- •35. Квантовая оптика. Фотоэффект. Фотоны
- •Законы внешнего фотоэффекта
- •Вентильный фотоэффект
- •Принцип неопределённости. Одномерное движение. Элементарное представление о волновой функции и уравнении Шредингера.
- •Боровский атом водорода и его квантование. Боровские уровни и спектр атома водорода. Полуклассическая теория Бора
- •38. Реальный атом и его квантовое число. Таблица Менделеева.
- •Структура периодической системы
- •Значение периодической системы
- •Устойчивость атомных ядер
- •Применение изотопов человеком
- •40.Ядерные реакции. Радиоактивный распад и его виды. Закон радиоактивного распада. Ядерный синтез.
- •Гамма-распад (изомерный переход)
- •Ядерные силы и реакции.
Законы внешнего фотоэффекта
Закон Столетова: при неизменном спектральном составе электромагнитных излучений, падающих на фотокатод, фототок насыщения пропорционален энергетической освещенности катода (иначе: число фотоэлектронов, выбиваемых из катода за 1 с, прямо пропорционально интенсивности излучения):
и
Максимальная начальная скорость фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой.
Для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота ν0 света (зависящая от химической природы вещества и состояния поверхности), ниже которой фотоэффект невозможен.
Внутренним фотоэффектом называется перераспределение электронов по энергетическим состояниям в твердых и жидких полупроводниках и диэлектриках, происходящее под действием излучений. Он проявляется в изменении концентрации носителей зарядов в среде и приводит к возникновению фотопроводимости или вентильного фотоэффекта.
Фотопроводимостью называется увеличение электрической проводимости вещества под действием излучения.
Вентильный фотоэффект
Вентильный фотоэффект или фотоэффект в запирающем слое — явление, при котором фотоэлектроны покидают пределы тела, переходя через поверхность раздела в другое твёрдое тело (полупроводник) или жидкость (электролит).
Ядерный фотоэффект
При
поглощении гамма-кванта
ядро
получает избыток энергии без изменения
своего нуклонного
состава, а ядро с избытком энергии
является составным
ядром.
Как и другие ядерные
реакции,
поглощение ядром гамма-кванта возможно
только при выполнении необходимых
энергетических и спиновых
соотношений. Если переданная ядру
энергия превосходит энергию
связи
нуклона в ядре, то распад образовавшегося
составного ядра происходит чаще всего
с испусканием нуклонов, в основном
нейтронов.
Такой распад ведёт к ядерным реакциям
и
,
которые и называются фотоядерными,
а явление испускания нуклонов (нейтронов
и протонов)
в этих реакциях — ядерным
фотоэффектом[4].
Фото́н
(от др.-греч.
φῶς, род.
пад.
φωτός, «свет») — элементарная
частица,
квант
электромагнитного
излучения
(в узком смысле — света).
Это безмассовая
частица,
способная существовать только двигаясь
со скоростью
света.
Электрический
заряд
фотона также равен
нулю.
Фотон может находиться только в двух
спиновых состояниях с проекцией спина
на направление движения (спиральностью)
±1. Этому свойству в классической
электродинамике
соответствует круговая правая и левая
поляризация
электромагнитной волны.
Фотону как квантовой частице свойственен
корпускулярно-волновой
дуализм,
он проявляет одновременно свойства
частицы и волны.
Фотоны обозначаются буквой
,
поэтому их часто называют гамма-квантами
(особенно фотоны высоких энергий);
эти термины практически синонимичны.
С точки зрения Стандартной
модели
фотон является калибровочным
бозоном.
Виртуальные
фотоны[3]
являются переносчиками электромагнитного
взаимодействия,
таким образом обеспечивая взаимодействие,
например, между двумя электрическими
зарядами.[4]
Фотон — самая распространённая по
численности частица во Вселенной. На
один нуклон
приходится не менее 20 миллиардов фотонов.