
- •2. Линзы. Вывод формулы линзы. Построение изображений в линзе. Линзы
- •Вывод формулы линзы
- •Построение изображений в линзе
- •3.Интерференция света. Амплитуда при интерференции. Расчет интерференционной картины в опыте Юнга.
- •4. Пространственная и временная когерентность. Оценить радиус когерентности солнечного света близи поверхности Земли. Радиус Солнца равен ; среднее расстояние до Земли .
- •6.Интерференция в тонких пленках.
- •7. Явление полного внутреннего отражения. Световоды.
- •8.Применение интерференции. Интерферометр Майкельсона.
- •9. Применение интерференции. Интерферометр Фабри-Перо.
- •10. Просветление оптики.
- •10. Метод зеркал Френеля для наблюдения итнтерференции света. Расчёт интерференционной картины.
- •Бизеркало Френеля
- •12.Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция Френеля на круглом отверстии и круглом диске. Графическое решение.
- •13.Дифракция на одной щели. Как влияет на дифракцию Фраунгофера от одной щели увеличение длины волны и ширины щели?
- •16.Дифракция рентгеновских лучей. Условия Вульфа-Брэггов.
- •17. Физические принципы получения и восстановления голограммы.
- •18. Поляризация при отражении и преломлении. Формулы Френеля.
- •19. Двойное лучепреломление. Его объяснение. Нарисуйте ход луча в двоякопреломляющем одноосном кристаллею. Поляризация при двойном лучепреломлении.
- •20. Интерференция поляризованных лучей.
- •Xод луча при нормальном и наклонном падении.
- •22. Анализ поляризованного света. Закон Малюса.
- •23. Искусственное двойное лучепреломление. Эффект Керра. Оптический метод определения напряжений в образце.
- •24. Вращение плоскости поляризации. Поляриметр-сахариметр.
- •25.Рассеяние света. Степень поляризации рассеянного света.
- •26. Дисперсия света. Электронная теория дисперсии. Ход белого луча в призме. Вывод формулы для угла отклонения лучей призмой.
- •27. Излучение Вавилова – Черенкова.
- •28. Эффект Доплера в оптике.
- •29. Тепловое излучение.
- •31. Вывод законов теплового излучения (законов Вина, Стефана-Больцмана) из формулы Планка.
- •32. Оптическая пирометрия. Пирометр с исчезающей нитью.
- •34. Фотоэффект. Законы ф-та. Объяснение ф-та. Зависимость максимальной кинетической энергии фотоэлектронов от частоты света.
- •35. Фотоэффект.
- •36. Противоречие законов фотоэффекта з-нам классической физики. Ур-е Эйнштейна для ф-та. Внутренний ф-т. Применение ф-та.
- •37. Эффект Комптона.
- •38. Давление света. Вывод формулы для давления света на основе фотонных представлений о свете.
- •39. Тормозное рентгеновское излучение. График зависимости интенсивности от напряжения на лучевой трубке.
- •41. Дискретность квантовых состояний, опыт Франка и Герца, интерпретация опыта; квантовые переходы, коэффициенты Эйнштейна для квантовых переходов. Связь между ними.
- •42. Ядерная модель атома.
- •43. Постулаты Бора. Теория атома водорода по Бору. Расчет энергетических состояний атома водорода с точки зрения теории Бора.
- •44. Пользуясь соотношением неопределённости Гейзенберга, оценить минимальную энергию электрона в атоме водорода.
- •46. Спектры щелочных элементов. Дуплетная структура спектров щелочных элементов.
- •47. Опыт Штерна и Герлаха.
- •48. Эффект Зеемана.
- •49. Застройка электронных оболочек. Периодическая система элементов Менделеева.
- •50. Характеристическое рентгеновское излучение. Закон Мозли. Дублетный характер рентгеновских спектров.
- •51. Молекулярные спектры.
- •52.Комбинационное рассеяние света.
- •53.Люминисценция. Определение. Правило Стокса.
- •54. Оптические квантовые генераторы. Свойства лазерного излучения.
- •2. Свойства лазерного излучения.
- •56. Нелинейная оптика.
- •57. Атомное ядро: состав, характеристики, модели, ядерные силы. Масса. Размеры ядер.
- •59. Ядерные реакции.
- •60.Цепная реакция деления.
- •62. Фундаментальное взаимодействия. Элементарные частицы, их классификация, методы решения. Законы сохранения в физике элементарных частиц.
- •63.Космическое излучение.
- •61. Ядерный магн. Резонанс.
27. Излучение Вавилова – Черенкова.
Советский физик п. а. Черенков (1904 – 1990), работавший под руководством Вавилова, показал, что при движении релятивистских заряженных частиц в среде с постоянной скоростью v, превышающей фазовую скорость света в этой среде, т. е. при условии v>c/n (n – показатель преломления среды), возникает электромагнитное излучение, названное впоследствии излучением (эффектом) Вавилова – Черенкова. Природа данного излучения, обнаруженного для разнообразных веществ, в том числе и для чистых жидкостей, подробно изучалась С. И. Вавиловым. Он показал, что данное свечение не является люминесценцией, как считалось ранее, и высказал предположение, что оно связано с движением свободных электронов через вещество.
Излучение Вавилова – Черенкова в 1937 г. было теоретически объяснено советскими учеными И. Е. Таммом(1895-1971) и И.М. Франком(р. 1908) (Черенков, Тамм и Франк в 1958 г. удостоены Нобелевской премии).
Согласно электромагнитной теории, заряженная частица( например, электрон) излучает электромагнитные волны лишь при движении с ускорением. Тамм и Франк показали, что это утверждение справедливо только до тех пор, пока скорость заряженной частицы не превышает фазовой скорости c/n электромагнитных волн в среде, в которой частица движется. Если частица обладает скоростью v>c/n, то, даже двигаясь равномерно, она будет излучать электромагнитные волны. Таким образом, согласно теории Тамма и Франка, электрон, движущийся в прозрачной среде со скоростью, превышающей фазовую скорость света в данной среде, должен сам излучать свет.
Отличительной особенностью излучения Вавилова – Черенкова является его распространение не по всем направлениям, а лишь по направлению, составляющим острый угол с траекторией частицы, т. е. вдоль образующих конуса, ось которого совпадает с направлением скорости частицы. Определим угол
cos=(c/n)/v=c/(nv).
Возникновение излучения Вавилова – Черенкова и его направленность истолкованы Франком и Таммом на основе представлений об интерференции света с использованием принципа Гюйгенса.
На основе излучения Вавилова – Черенкова разработаны широко используемые экспериментальные методы для регистрации частиц высоких энергий и определения их свойств (направление движения, величина и знак заряда, энергия). Счетчики для регистрации заряженных частиц, в которых используется излучение Вавилова – Черенкова, получили название черенковских счетчиков. В этих счетчиках частица регистрируется практически мгновенно (при движении заряженной частицы в среде со скоростью, превышающей фазовую скорость света в данной среде, возникает световая вспышка, преобразуемая с помощью фотоэлектронного умножителя в импульс тока). Это позволило в1955 г. итальянскому физику Э. Сегре (р. 1905) открыть в черенковском счетчике короткоживущую античастицу – антипротон.
28. Эффект Доплера в оптике.
Согласно принципу относительности Эйнштейна, уравнение световой волны во всех инерциальных системах отсчёта одинаково по форме. Используя преобразования Лоренца, можно получить уравнение волны, посылаемой источником, в направлении приёмника, в другой инерциальной системе отсчёта, а следовательно и связать частоты световых волн, излучаемых источником (0) и воспринимаемых источником (). Теория относительности приводит уравнение описывающее эффект Доплера для электромагнитных волн в вакууме:
,
где v-
скорость источника света относительно
приёмника, с- скорость света в вакууме.
,
θ-
угол между вектором скорости v
и направлением наблюдения, измеряемый
в системе отсчёта связанной с наблюдением.
При
θ=0,
продольный эффект Доплера, наблюдаемый
при движении приёмника вдоль линии,
соединяющей его с источником. При малых
около светных скоростях v(v<<c),
разлагая в ряд и пренебрегая числом
порядка β2,
получим:
Изменение
частоты зависит от
,
но для заметного.
По величине
смещения необходимо перемещать источник
света относительно приёмника с большой
скоростью.
В призменный спектрограф, с помощью которого определяется частота света, направлялись лучи, многократно отражённые от двух параллельных зеркал, перемещающихся по отношению к неподвижному источнику света.
S- источник света, находящийся посередине между зеркалами BB1 и CC1,
P- коллиматор призменного спектрографа, в который попадают лучи после n- кратного отражения.
Определим скорость, с которой перемещается мнимый источник света n кратно отраженных лучей в результате перемещения зеркал со скоростью v. Для этого определим местоположение мнимого источника света n-кратных отраженных лучей.
Луч SA отражается от зеркала BB1 так, как если бы он выходил из мнимого источника света S1 отражается от зеркала на таком же расстоянии a как и действительный источник.
Луч,
испытывающий n
отражений в этих параллельных зеркалах
и попадающий в коллиматор призменного
спектрографа P,
распространяется так, как будто он вышел
из мнимого источника, отстающего от
зеркала на расстоянии:
.
При изменении расстояния a
на (a+Δa),
мнимый источник переместится и будет
отстоять на расстоянии b+Δb=(2n-1)(d+Δd)
но так как само зеркало переместилось
на расстояние Δa
то по отношению
к неподвижным телам источник переместится
на расстояние Δb’=Δb-Δa=2(n-1)Δa
Поэтому
если привести зеркала BB1
и CC1
по отношению к источнику света в движение
со скоростью
,
но мнимый источник света сответственный
n
простым отражённым лучам, будет
перемещаться по отношению к спектрографу,
с помощью которого измеряется длина
волны световых лучей со скоростью
,которая
в 2(n-1
) раз превышает
скорость действительного перемещения
зеркал.