
- •7(8).092501 «Автоматизированное управление
- •Содержание
- •Глава 6 общая структура ПрограммноГо обеспечениЯ асу тп 84
- •Глава 7 Принципы проектирования пользовательского интерфейса 93
- •Глава 8 Надежность систем автоматизации 97
- •Глава 9 Средства самодиагностики и восстановления 123
- •Глава 10 Метрологическое обеспечение асу тп 129
- •Глава 1 Общая характеристика асу тп
- •1.1 Термины и определения
- •1.2 Функции асу тп
- •I. Информационные
- •II. Управляющие:
- •III. Вспомогательные:
- •1.3 Состав асутп
- •1.4 Классификация асу тп
- •Глава 2 Концепция построения асу тп
- •2.1 Особенности систем цифрового управления
- •2.2 Концепция построения асутп
- •2.3 Аппаратная платформа контроллеров
- •Глава 3 Организация разработки по асу тп
- •3.1 Стадии создания асу тп
- •3.2 Этапы создания специализированного программного и информационного обеспечения (спио)
- •3.3 Техническое задание на разработку спио
- •3.4 Технический проект спио
- •3.5 Программы и программные документы спио
- •Глава 4 Информационное обеспечение асу
- •4.1 Общие положения
- •4.1.1 Цепочка прохождения информационного сигнала о ходе тп:
- •4.1.2 Схемы связи с датчиками (о параметрах тп)
- •4.2 Вход и выход технологических процессов
- •4.3 Бинарные и цифровые датчики
- •4.4 Аналоговые датчики
- •4.5 Датчики движения
- •4.6 Датчики силы, момента и давления
- •4.7 Датчики приближения
- •4.8 Согласование и передача сигналов
- •4.8 Устройства связи с объектом
- •Глава 5 Алгоритмическое и программное обеспечение задач контроля и первичной обработки информации
- •5.1 Назначение алгоритмов контроля
- •5.2 Аналитическая градуировка (масштабирование) и коррекция показаний датчиков
- •5.3 Фильтрация и сглаживание
- •5.4 Достоверность исходных данных и аварийная сигнализация
- •5.5 Интерполяция и экстраполяция
- •5.6 Статистическая обработка экспериментальных данных
- •5.7 Дискретизация технологической информации.
- •5.8 Задачи характеризации
- •5.10 Структура данных для обработки измерений
- •Глава 6 общая структура ПрограммноГо обеспечениЯ асу тп
- •6.1 Особенности объектов автоматизации черной металлургии
- •6.2 Асу тп как система функциональных задач
- •6.3 Факторы, определяющие качество специального программного обеспечения
- •6.4 Основные требования и структура спо асутп
- •6.5 Основные подсистемы спо асутп
- •Назначение алгоритмов контроля.
- •Глава 7 Принципы проектирования пользовательского интерфейса
- •7.1 Основные требования
- •7.2 Дизайн операторского интерфейса
- •7.3 Виды видеокадров асутп
- •Глава 8 Надежность систем автоматизации
- •8.1 Общие сведения о надежности автоматизируемых систем
- •Показатели надежности систем
- •Показатели надежности восстанавливаемых систем
- •8.4 Принципы описания надежности асутп. Отказы ас
- •8.6 Общая характеристика условий работы автоматических систем
- •8.7 Методы повышения надежности автоматических систем
- •8.7.1 Повышение надежности при проектировании
- •Глава 9 Средства самодиагностики и восстановления
- •Глава 10 Метрологическое обеспечение асу тп
- •10.1 Асу тп как объект метрологического обеспечения
- •10.2 Метрологическая аттестация асу тп
4.6 Датчики силы, момента и давления
Многие типы датчиков силы/момента (force/torque) основаны на измерении деформаций. Датчики для измерения деформаций называются тензодатчиками (strain gauge). Принцип действия таких датчиков — изменение электрического сопротивления в образце, который подвергается воздействию внешних сил (пьезорезистивный эффект). Относительное изменение сопротивления как функция действующей на датчик силы зависит от используемого материала: у полупроводникового датчика оно на 1-2 порядка больше, чем у металлического. Чувствительный элемент у полупроводникового датчика выполнен из монокристалла пьезорезистивного материала. Дополнительное преимущество полупроводниковых тензодатчиков — более высокое удельное сопротивление по сравнению с металлическими и, соответственно, меньшее потребление мощности и выделение тепла.
Измерение моментов и сил необходимо во многих задачах, включая управление точным движением (например, перемещения и захваты в робототехнике) и передаваемой механической мощностью в двигателях и системах привода.
4.7 Датчики приближения
Изменение электрических свойств элементов колебательных контуров при приближении к внешним объектам можно использовать для создания датчиков приближения (proximity sensors). Эти датчики могут выдавать аналоговый сигнал, пропорциональный — по крайней мере в определенном диапазоне — расстоянию до заданного объекта, или цифровой сигнал при достижении заданного порогового значения расстояния. Электрические датчики приближения используют следующие принципы.
индуктивные датчики приближения работают на основе излучения высокочастотного электромагнитного поля обмоткой, которая входит в колебательный контур. Электромагнитное поле индуцирует в проводящем материале объекта вихревые токи. Когда объект, расстояние до которого контролируется, приближается к датчику (обычно на 2-30 мм), колебания начинают затухать. Изменение тока в колебательном контуре можно использовать для срабатывания полупроводникового ключа.
ёмкостные датчики приближения содержат затухающий колебательный RC-кок-тур. Емкость зависит от расстояния между обкладками конденсатора, их площади и свойств диэлектрика между ними. Датчик присоединен к одной из обкладок или к диэлектрику. Когда объект приближается к датчику, результирующее изменение емкости, а следовательно, и частоты колебаний, можно зафиксировать электрически и использовать для управления выключателем. Емкостный датчик может обнаружить объекты, которые не являются проводящими. Диапазон срабатывания для таких датчиков обычно лежит между 5 и 40 мм. Емкостные датчики можно использовать также для измерения силы и давления.
магнитные датчики приближения опознают приближение объекта по изменению характеристик магнитного поля и не имеют подвижных частей. Принцип работы может базироваться на индуктивности, магнитном сопротивлении (reluctance), магниторезистивном эффекте или эффекте Холла. Магниторезистивный эффект и эффект Холла обусловлены одним и тем же физическим явлением — сопротивление проводящего материала изменяется под воздействием внешнего магнитного поля. Если проводник с электрическим током подвергается воздействию магнитного поля, его сопротивление увеличивается (магниторезистивный эффект). Кроме того, на противоположных сторонах этого проводника возникает разность потенциалов, которую можно измерить (эффект Холла). Проводник должен быть расположен так, чтобы магнитное поле было перпендикулярно направлению тока; разность потенциалов возникает вдоль оси, перпендикулярной и магнитному полю, и направлению тока. Геометрическая форма проводника выбирается так, чтобы максимальным был либо магниторезистивный эффект, либо эффект Холла. Датчики Холла часто выполняются из полупроводниковых материалов.