
- •1. Предмет гидравлики, основные понятия и методы
- •2. Основные физические свойства жидкостей. Идеальная и реальная жидкости
- •3. Определение вязкости жидкости. Вискозиметр Стокса.
- •4. Свойства жидкости. Капиллярность.
- •5. Эксплуатационные свойства рабочих жидкостей.
- •6. Изменение характеристик рабочих жидкостей в процессе эксплуатации
- •7. Силы, действующие в покоящейся жидкости.
- •8. Свойства гидростатического давления.
- •9. Основное уравнение гидростатики.
- •10. Закон Паскаля. Его техническое применение.
- •11. Приборы для измерения давления.
- •12. Системы отсчета давления (шкалы давления)
- •13. Закон Архимеда. Плавание тел.
- •14. Гидростатический парадокс.
- •15. Виды движения (течения) жидкости. Основные понятия траектория, линия тока, трубка тока, элементарная струйка.
- •16. Типы потоков жидкости, характеристики потоков: живое сечение, смоченный периметр, гидравлический радиус, расход, средняя скорость.
- •17. Уравнение неразрывности для элементарной струйки жидкости, потока жидкости в гидравлической форме.
- •18. Уравнение неразрывности движения жидкости.
- •19. Уравнение Бернулли для струйки идеальной жидкости.
- •20. Геометрическая интерпретация уравнения Бернулли.
- •21. Энергетическая интерпретация уравнения Бернулли.
- •22. Уравнение Бернулли для потока идеальной жидкости.
- •23. Уравнение Бернулли для потока реальной жидкости.
- •24. Два режима течения жидкости, критерий Рейнольдса.
- •5.1. Ламинарный и турбулентный режим движения жидкости.
- •5.2. Физический смысл числа Рейнольдса
- •25. Возникновение турбулентного и ламинарного течения жидкости.
- •26. Связь давления и скорости в потоке
- •27. Сопротивление потоку жидкости.
- •28. Гидравлические потери по длине.
- •29. Ламинарное течение жидкости.
- •30. Вязкое трение при турбулентном движении жидкости.
- •31. Турбулентное течение в шероховатых трубах.
- •32. Гидравлические сопротивления в потоках жидкости
- •33. Классификация потоков жидкости. (спросить у препода)
- •34. Виды местных сопротивлений Внезапное расширение.
- •Внезапное сужение потока
- •Постепенное расширение потока
- •Постепенное сужение потока
- •35. Внезапное расширение потока. Теорема Борда – Карно. Внезапное расширение.
- •36. Внезапное сужение потока. Внезапное сужение потока
- •37. Гидравлические потери в диффузоре, конфузоре и при повороте потока.
- •38. Гидравлические потери по длине
- •39. Классификация трубопроводов
- •40. Истечение жидкости через малое отверстие в тонкой стенке.
- •41. Истечение жидкости через насадки.
- •42. Гидравлический удар в трубопроводах. Меры предупреждения.
- •43. Скорость распространения гидравлической ударной волны в трубопроводе.
- •44. Определение потерь при движении жидкости.
- •45. Причины возникновения местных сопротивлений.
- •46. Явление кавитации и борьба с ним.
- •47. Истечение жидкости через цилиндрический насадок.
- •5.5. Истечения через отверстия и насадки при переменном напоре (опорожнение сосудов)
- •48. Зависимость коэффициента Кориолиса от числа Рейнольдса.
41. Истечение жидкости через насадки.
Н
асадками
называются короткие трубки, монтируемые,
как правило, с внешней стороны резервуара
таким образом, чтобы внутренний канал
насадка полностью соответствовал
размеру отверстия в тонкой стенке.
Насадком называется короткая труба длиной обычно от 3 до 6 d, улучшающая условия вытекания жидкости. Например, если вода вытекает из бака через отверстие и насадок (рис. 15), которые расположены на одной и той же глубине и диаметры которых равны, то в насадке расход воды будет примерно на 30 % больше, чем в отверстии. Наличие такой направляющей трубки приведет к увеличению расхода жидкости при прочих равных условиях. Причины увеличения следующие. При отрыве струи от острой кромки отверстия струя попадает в канал насадка, а поскольку струя испытывает сжатие, то стенок насадка она касается на расстоянии от 1,0 до 1,5 его диаметра. Воздух, который первоначально находится в передней части насадка, вследствие неполного заполнения его жидкостью постепенно выносится вместе с потоком жидкости. Таким образом, в этой области образуется «мёртвая зона», давление в которой ниже, чем давление в окружающей среде (при истечении в атмосферу в «мёртвой зоне» образуется вакуум). За счёт этих факторов увеличивается перепад давления между резервуаром и областью за внешней его стенкой и в насадке генерируется так называемый эффект подсасывания жидкости из резервуара.
Однако наличие самого насадка увеличивает гидравлическое сопротивление для струи жидкости, т.к. в самом насадке появляются потери напора по длине трубки. Если трубка имеет ограниченную длину, то влияние подсасывающего эффекта с лихвой компенсирует дополнительные потери напора по длине. Практически эти эффекты (подсасывание и дополнительные сопротивления по длине) компенсируются при соотношении: / = 55 d. По этой причине длина насадков ограничивается / = (3 -5)d . По месту расположения насадки принято делить на внешние и внутренние насадки. Когда насадок монтируется с внешней стороны резервуара (внешний насадок), то он оказывается более технологичным, что придаёт ему преимущество перед внутренними насадками. По форме исполнения насадки подразделяются на цилиндрические и конические, а по форме входа в насадок выделяют ещё коноидальные насадки, вход жидкости в которые выполнен по форме струи.
Простейшим насадком является цилиндрический насадок. Течение в нём может происходить в двух разных режимах. В первом случае на острых входных кромках насадка происходит совершенное сжатие струи и далее она движется, не касаясь стенок насадка. В этом случае истечение ничем не отличается от истечения через малое отверстие в тонкой стенке. Скорость при этом истечении высокая, а расход минимален.
Во втором случае, как и при истечении через отверстие в тонкой стенке, струя жидкости вначале сжимается на некотором удалении от входного сечения, образуя вихревую зону, давление в этом сечении струи становится меньше атмосферного. Далее струя постепенно расширяется и заполняет всё сечение насадка. Из-за того, что сжатия на выходе насадка нет (ε = 1,0) а коэффициент расхода через такой насадок равняется
.
При этом расход жидкости через насадок при прочих равных условиях превышает расход в первом случае, а скорость жидкости становится меньше из-за более высокого сопротивления.
Е
щё
лучшие условия истечения наблюдаются
при движении жидкости через так называемый
тороидальный
насадок, который обеспечивает более
высокий коэффициент расхода. Его
значение, в зависимости от увеличения
радиуса скругления кромки, доходит до
.
Когда радиус кривизны становится больше длины насадка, насадок становится коноидальным. Коэффициент расхода в таких условиях истечения приближается к значению
.
Сходящиеся насадки. Если придать насадку форму конуса, сходящемуся по направлению к его выходному отверстию, то такой насадок будет относиться к группе сходящихся конических насадков. Такие насадки характеризуются углом конусности а. От величины этого угла зависят все характеристики насадков. Как коэффициент скорости, так и коэффициент расхода увеличиваются с увеличением угла конусности, при угле
»
конусности в 13° достигается максимальное
значение ко-
эффициента расхода превышающее 0,94. При дальнейшем увеличении угла конусности насадок начинает работать как отверстие в тонкой стенке, при этом коэффициент скорости продолжает увеличиваться, а коэффициент расхода начинает убывать. Это объясняется тем, что уменьшаются потери на расширение струи после её сжатия. Область применения сходящихся насадков связана с теми случаями, когда необходимостью иметь большую выходную скорость струи жидкости при значительном напоре (сопла турбин, гидромониторы, брандспойты).
Расходящиеся насадки. Вакуум в сжатом сечении расходящихся насадков больше, чем у цилиндрических насадков и увеличивается с возрастанием угла конусности, что увеличивает расход жидкости. Но с увеличением угла конусности расходящихся насадков возрастает опасность отрыва струи от стенок насадков. Необходимо отметить, что потери энергии в расходящемся насадке больше, чем в насадках других типов. Область применения расходящихся насадков охватывает те случаи, где требуется большая пропускная способность при малых выходных скоростях жидкости (водоструйные насосы, эжекторы, гидроэлеваторы и др.)
К
оноидальные
насадки.
В коноидальных насадках вход в насадки
выполнен по профилю входящей струи. Это
обеспечивает уменьшение потерь напора
до минимума. Так значение коэффициентов
скорости и расхода в коноидальных
цилиндрических насадков достигает 0,97
- 0,99. 7.4. Истечение
жидкости через широкое отверстие в
боковой стенке. Истечение
жидкости через большое отверстие в
боковой стенке сосуда отличается от
истечения через малое отверстие тем,
что величина напора будет различной
для различных площадок в сечении
отверстия. Максимальным напором
будет напор в площадках примыкающих к
нижней кромке отверстия. В связи с этим
и скорости в различных элементарных
струйках проходящих через сечение
отверстия также будут неодинаковы В то
же время давление во внешней среде, в
которую происходит истечение жидкости
одинаково и равно атмосферному давлению.