Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОТВЕТЫ ПО ГИДРАВЛИКЕ.docx
Скачиваний:
82
Добавлен:
15.04.2019
Размер:
423.53 Кб
Скачать

24. Два режима течения жидкости, критерий Рейнольдса.

Как нетрудно было убедиться в вышеприведенном опыте, если фиксировать две скорости в прямом и обратном переходах движения в режимы ламинарное → турбулентное, то

υ1 ≠ υ2

где υ1 – скорость, при которой начинается переход из ламинарного в турбулентный режим;

υ2 – то же самое при обратном переходе.

Как правило, υ2 < υ1. Это можно понять из определения основных видов движения.

Ламинарным (от лат. lamina – слой) считается такое движение, когда в жидкости нет перемешивания частиц жидкости; такие изменения в дальнейшем будем называть пульсациями.

Движение жидкости турбулентное (от лат. turbulentus – беспорядочный), если пульсация местных скоростей приводит к перемешиванию жидкости.

Скорости перехода υ1, υ2 называют:

υ1– верхней критической скоростью и обозначают как υв. кр, это скорость, при которой ламинарное движение переходит в турбулентное;

υ2– нижней критической скоростью и обозначают как υн. кр, при этой скорости происходит обратный переход от турбулентного к ламинарному.

Значение υв. кр зависит от внешних условий (термодинамические параметры, механические условия), а значения υн. кр не зависят от внешних условий и постоянны.

Эмпирическим путем установлено, что:

где V – кинематическая вязкость жидкости;

d – диаметр трубы;

R– коэффициент пропорциональности.

В честь исследователя вопросов гидродинамики вообще и данного вопроса в частности, коэффициент, соответствующий uн. кр, называется критическим числом Рейнольдса Reкр.

Если изменить V и d, то Reкр не изменяется и остается постоянным.

Если Re< Reкр, то режим движения жидкости ламинарный, поскольку υ < υкр; если Re > Reкр, то режим движения турбулентный из-за того, что υ> υкр.

5.1. Ламинарный и турбулентный режим движения жидкости.

В озьмём прозрачную трубу, в которой с небольшой скоростью V1 течёт прозрачная жидкость, например, вода. В этот поток поместим небольшие, существенно меньшие, чем диаметр потока, трубки. В трубках под напором находится подкрашенная жидкость, например, цветные чернила, которая может из них вытекать, если открыть краны К. Будем открывать их на короткое время (1-3 секунды) и прекращать подачу чернил через какие-то промежутки времени так, чтобы можно было проследить движение цветной жидкости. В таком случае в потоке будут возникать разноцветные струйки, причём цветная жидкость будет явно показывать распределение скоростей (эпюра скоростей) по сечению потока. Это распределение будет соответствовать рассмотренной ранее струйной модели потока. Если наблюдать за движением жидкости, то можно ясно видеть, что при перемещении от сечения 1 к сечению 2 картина распределения скоростей будет оставаться постоянной, а движение жидкости будет слоистым, плавным, все струйки тока будут параллельны между собой. Такое движение носит название ламинарное (от латинского слова lamina - слой).

Е сли увеличить скорость основного потока до величины V2 и повторить эксперимент с цветными струйками, то эпюры скоростей как бы вытянутся, а характер движения останется прежним, ламинарным. Попутно заметим, что коэффициент кинетической энергии α, входящий в уравнение Бернулли и учитывающий отношение действительной кинетической энергии потока к кинетической энергии, посчитанной с использованием средней скорости, при «вытягивании» эпюры скоростей возрастает.

Е сли еще больше увеличить подачу жидкости до скорости V3, то эпюры скоростей могут вытянуться ещё больше и при этом течение будет спокойным, плавным – ламинарным. Коэффициент α приближается к значению 2.

О днако до бесконечности увеличивать скорость при ламинарном режиме движения потока невозможно. Обязательно наступит такой момент, когда характер движения жидкости радикально изменится. Цветные струйки начнут сначала колебаться, затем размываться и интенсивно перемешиваться. Течение потока становится неспокойным, с постоянным вихреобразованием. Эпюра распределения скоростей по сечению потока приблизится к прямоугольной форме, а значения скоростей в разных сечениях потока станут практически равны средней скорости движения жидкости. Значение коэффициента кинетической энергии α приближается к 1.

Такое течение жидкости называется турбулентным (от латинского слова turbulentus - возмущённый, беспорядочный).

Если снова уменьшить скорость течения жидкости, восстановиться ламинарный режим движения. Переход от одного режима движения к другому будет происходить примерно при одной и той же скорости, которую называют критической скоростью и обозначают Vкр. Эксперименты показывают, что значение этой скорости прямо пропорционально кинематическому коэффициенту вязкости жидкости и обратно пропорционально диаметру трубопровода d (для наиболее часто применяемых труб круглого сечения) или гидравлическому радиусу потока R (для других типов труб и русел).

или

Безразмерный коэффициент называется критическим числом Рейнольдса по фамилии английского ученого - физика, исследовавшего в 1883г. два режима течения жидкости. Этот коэффициент обозначается:

Опытным путём установлено, что критическое число Рейнольдса для круглых труб - 2320 для круглых труб, а для других сечений 580.

Для определения режима движения в потоке надо найти фактическое число Рейнольдса Re , которое можно установить для любого потока по формуле

,

и сравнить его с критическим числом Reкр.

При этом, если Re Reкр, то режим движения ламинарный, если Re > Reкр, то режим движения турбулентный.