Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЕОРОСНОВЫ ХИМИИ.doc
Скачиваний:
42
Добавлен:
15.04.2019
Размер:
3.73 Mб
Скачать

Определение возможности окислительно-восстановительных реакций по степеням окисления элементов

Необходимым условием для взаимодействия веществ по окислительно–восстановительному типу является наличие потенциальных окислителя и восстановителя. Определение их рассмотрено выше, теперь покажем, как применить эти свойства для анализа возможности окислительно–восстановительной реакции (для водных растворов).

Примеры:

1) HNO3 + PbO2 ... – реакция не идет, т. к. нет

о–ль о–ль потенциального восстановителя;

2) Zn + KI ... – реакция не идет, т. к. нет

в–ль в–ль потенциального окислителя;

3) KNO2+KBiO3+H2SO4  ... – реакция возможна, если при этом

в–ль о–ль KNO2 будет восстановителем;

4) KNO2 + KI +H2SO4  ... – реакция возможна, если при этом

о – ль в – ль KNO2 будет окислителем;

5) KNO2 + H2O2  ... – реакция возможна, если при этом

в – ль о – ль H2O2 будет окислителем, а KNO2

– восстановителем (или наоборот?);

6) HNO2  ... – возможна реакция

о – ль/ в – ль  диспропорционирования азота.

Наличие потенциальных окислителя и восстановителя является необходимым, но недостаточным условием для протекания реакции. Так, в рассмотренных выше примерах только в пятом можно сказать, что какая-то из двух возможных реакций произойдет; в остальных случаях необходима дополнительная информация: будет ли эта реакция энергетически выгодной (см. далее).

Прогнозирование продуктов окислительно-восстановительных реакций

Определение наиболее вероятных продуктов окислительно-восстановительной реакции в случаях, когда путей превращения исходных веществ несколько, в общем случае является наиболее сложным этапом анализа этих взаимодействий. Причина в том, что тот или иной путь реакции нередко определяется не только энергетикой, но зависит и от кинетических факторов. Такой анализ требует определенных знаний по неорганической химии. Поэтому здесь рассмотрим варианты превращений типичных окислителей и восстановителей, наиболее часто встречающихся в окислительно-восстановительных реакциях.

К важнейшим окислителям относятся: галогены (в виде простых веществ или оксосоединений), кислород (О2, О3), некоторые оксиды (PbO2, CrO3), пероксиды (H2O2, Na2O2, Na2S2O8), перманганаты (KMnO4), дихроматы (K2Cr2O7), висмутаты (KBiO3), концентрированная азотная кислота, реже – нитраты, простые ионы «благородных металлов» (Ag+, Hg2+). Кислоты (азотную, серную) чаще используют для окисления металлов.

К важнейшим восстановителям относятся многие металлы (цинк, магний, алюминий, железо), водород (Н2), сернистый ангидрид и сульфиты, халькогениды (реже – галогениды), соли Sn2+ и Fe2+, аммиак, альдегиды, спирты и др. Обратите внимание, что сильнейшие восстановители – щелочные и щелочноземельные металлы – не следует применять в водных средах, т. к. они окисляются растворителем.

Окислители–галогены. Для галогенов (простых веществ) вариант восстановления единственный – до галогенид-ионов: Cl2 + 2e  2Cl.

Для оксосоединений галогенов(ClO, ClO3 IO3 и др.) путь восстановления зависит от pH раствора: в кислой среде они восстанавливаются до простого вещества, например 2IO3  I2, а в щелочной среде – до галогенид-ионов, например, ClO3  Cl.

Окислитель– молекулярный кислород. Следует отметить, что О2 – окислитель сильный, но «заторможенный», поскольку реакции с его участием протекают с приемлемой скоростью только при высоких температурах; в растворах без катализатора он восстанавливается очень медленно. Правда, встречаются случаи, когда сами реагенты-восстановители катализируют свое окисление молекулярным кислородом, например Mn(OH)2 и Fe(OH)2 довольно быстро окисляются в растворе кислородом. При восстановлении O2 степень окисления кислорода понижается обычно до (–2):

О2 + 4H+ + 4e  2H2O – в кислой среде;

О2 + 2H2O +4e  4OHв щелочной и нейтральной среде.