
- •Содержание
- •Введение
- •Введение
- •Раздел первый. Обоснование проектных решений
- •Глава 1. Классификация и нормы проектирования автомобильных дорог
- •1.1 Классификация автомобильных дорог
- •1.2. Нормы проектирования автомобильных дорог
- •1.3. Расчетные скорости, нагрузки и габаритные размеры подвижного состава
- •1.4. Охрана окружающей среды
- •Приложение 1. Список рекомендуемых нормативно-технических документов
- •1.1. Общие стандарты
- •1.2. Грунты, земляное полотно, торф
- •1.3. Асфальтобетонные смеси, битум
- •1.3. Бетон, железобетон. Бетонные смеси, щебень, гравий, песок, цемент, шлаки, шламы и другие материалы
- •1.5. Автомобильные, железные дороги, аэродромы, земляное полотно дорог, мосты и трубы, укрепительные работы (изыскания, проектирование, строительство)
- •1.6. Основания и фундаменты
- •1.7. Изыскания автомобильных, железных дорог, аэродромов
- •1.8. Эксплуатация автомобильных дорог
- •1.9. Геотекстиль
- •1.10. Экология, климатология
- •1.11. Безопасность движения и техника безопасности
- •Глава 2. Организация проектирования автомобильных дорог
- •2.1. Общие положения
- •2.2. Предпроектное проектирование
- •2.3. Разработка проектной документации
- •2.4. Разработка рабочих чертежей
- •2.5. Состав проектной документации
- •Раздел 1. Общая пояснительная записка.
- •Раздел 2. Документы согласований.
- •Раздел 3. Отвод земель.
- •Раздел 4. Разделение собственности и стоимости строительства (реконструкции) по балансодержателям.
- •Раздел 5. Охрана окружающей среды.
- •Раздел 6. Строительные решения по автомобильной дороге.
- •Раздел 7. Строительные решения по искусственным сооружениям:
- •Раздел 8. Организация строительства:
- •2.6. Оформление проектной документации
- •2.2. Пример продольного профиля вновь проектируемых автомобильных дорог
- •Задание на разработку инженерного проекта капитального ремонта автомобильной дороги м-10 «Россия» в Новгородской области
- •Перечень технических документов, подлежащих использованию при разработке обоснования инвестиций
- •Перечень материалов и документов, включаемых в состав обоснования инвестиций (ои).
- •Перечень материалов и документов, включаемых в состав обосновывающих материалов инженерного проекта (ип).
- •Глава 3. Современная технология изысканий автомобильных дорог
- •3.1. Особенности традиционной технологии изысканий автомобильных дорог и ее анализ
- •3.2. Особенности технологии изысканий автомобильных дорог при проектировании на уровне сапр-ад
- •3.4. Методы обоснования полосы варьирования конкурирующих вариантов трассы
- •3.5. Цифровое моделирование рельефа, ситуации и геологического строения местности
- •3.6. Виды цифровых моделей местности
- •3.7. Методы построения цифровых моделей местности
- •3.8. Математическое моделирование местности
- •3.9. Задачи, решаемые с использованием цифровых и математических моделей
- •Глава 4. Экономическое обоснование строительства автомобильных дорог и мостовых переходов
- •4.1. Структура экономического обоснования дорожного строительства
- •4.2. Перспективный парк автомобилей
- •4.3. Прогнозирование перспективной интенсивности движения
- •4.4. Методы оценки общественной эффективности инвестиционных проектов дорожного строительства
- •4.5. Процедуры учета неопределенности
- •4.6. Элементы затрат-выгод инвестиционных проектов дорожного строительства
- •Глава 5. Топографо-геодезическое обоснование проектов
- •5.1. Геодезические опорные сети
- •5.2. Обозначение пунктов государственных геодезических сетей на местности
- •5.3. Привязка к пунктам государственных геодезических сетей
- •2. Привязка трассы к двум пунктам геодезической сети способом прямой засечки.
- •3. Привязка трассы к двум пунктам геодезической сети способом обратной засечки.
- •4. Привязка трассы к пунктам геодезической сети наземно-космическим способом.
- •5.4. Планово-высотное обоснование топографических съемок
- •5.5. Электронная тахеометрическая съемка
- •5.6. Наземно-космическая съемка
- •5.7. Наземное лазерное сканирование
- •Глава 6. Инженерно-геологическое обоснование проектов
- •6.1. Общие сведения об организации и составе инженерно-геологических изысканий
- •6.2. Современные технические средства, применяемые при инженерно-геологических изысканиях
- •6.3. Инженерно-геологические изыскания на полосе варьирования трассы
- •6.4. Инженерно-геологические изыскания по принятому варианту трассы
- •6.5. Разведка местных дорожно-строительных материалов
- •6.6. Лабораторные испытания и полевые методы исследования физико-механических свойств грунтов и материалов
- •6.7. Геофизические методы инженерно-геологических изысканий
- •6.8. Камеральная обработка и представляемые материалы
- •Глава 7. Инженерно-гидрометеорологическое обоснование проектов
- •7.1. Состав инженерно-гидрометеорологического обоснования проектов
- •7.2. Технология инженерно-гидрометеорологических изысканий
- •7.3. Морфометрические работы
- •7.4. Гидрометрические работы
- •7.5. Аэрогидрометрические работы
- •Раздел второй. Основные проектные работы
- •Глава 8. Обоснование требований к геометрическим элементам автомобильных дорог
- •8.1. Элементы плана автомобильных дорог
- •8.2. Элементы поперечных профилей
- •8.3. Элементы продольного профиля
- •8.4 Ширина проезжей части и земляного полотна
- •8.5. Остановочные, краевые полосы и бордюры
- •8.6. Поперечные уклоны элементов дороги
- •8.7. Нормы проектирования плана и продольного профиля
- •8.8. Переходные кривые
- •8.9. Виражи
- •8.10. Уширение проезжей части
- •8.11. Серпантины
- •8.12. Мосты и трубы
- •8.13. Тоннели
- •Глава 9. План автомобильных дорог. Принципы ландшафтного проектирования
- •9.1. Выбор направления трассы
- •9.2. Элементы клотоидной трассы
- •9.3. Принципы трассирования
- •9.4. Цели и задачи ландшафтного проектирования*
- •9.5. Согласование элементов трассы с ландшафтом
- •9.6. Особенности трассирования автомобильных дорог в характерных ландшафтах
- •9.7. Согласование земляного полотна с ландшафтом
- •9.8. Правила обеспечения зрительной плавности и ясности трассы
- •Глава 10. Проектирование продольного профиля автомобильных дорог
- •10.1. Принципы проектирования продольного профиля
- •10.2. Критерии оптимальности
- •10.3. Комплекс технических ограничений
- •10.4. Техника проектирования продольного профиля в традиционном классе функций
- •Глава 11. Проектирование земляного полотна
- •11.1. Элементы земляного полотна и общие требования к нему
- •11.2. Грунты для сооружения земляного полотна
- •11.3. Природные условия, учитываемые при проектировании земляного полотна
- •11.4. Учет водно-теплового режима при проектировании верхней части земляного полотна
- •11.5. Поперечные профили земляного полотна в обычных условиях
- •11.6. Проектирование насыпей на слабых основаниях
- •11.7. Проверка устойчивости откосов при проектировании высоких насыпей и глубоких выемок
- •11.8. Земляное полотно на склонах
- •Глава 12. Проектирование нежестких дорожных одежд
- •12.1. Общие сведения
- •12.2. Основы конструирования нежестких дорожных одежд
- •12.3. Расчеты нежестких дорожных одежд на прочность
- •12.4. Расчет конструкции дорожной одежды в целом по допускаемому упругому прогибу
- •12.5. Расчет по условию сдвигоустойчивости подстилающего грунта и малосвязных конструктивных слоев
- •12.6. Расчет конструкции дорожной одежды на сопротивление монолитных слоев усталостному разрушению от растяжения при изгибе
- •12.7. Обеспечение морозоустойчивости дорожной одежды
- •12.8. Осушение дорожной одежды и земляного полотна
- •Глава 13. Конструкции и основные положения расчета жестких дорожных одежд
- •13.1. Область применения. Основные виды покрытий
- •13.2. Общие требования к жестким дорожным одеждам. Основные принципы конструирования
- •13.3. Особенности конструкций жестких дорожных одежд
- •13.4. Основные положения расчета жестких дорожных одежд
- •Список литературы к главе 13
- •Глава 14. Особенности расчета жестких дорожных одежд
- •14.1. Напряжения в цементобетонном покрытии от внешней нагрузки
- •14.2. Определение разрушающей нагрузки для плит цементобетонного покрытия
- •14.3. Определение напряжений в цементобетонном покрытии по прогибам, измеренным в натуре
- •14.4. Определение эквивалентного модуля упругости и коэффициента поперечной деформации многослойного основания под жестким дорожным покрытием
- •14.5. Температурные напряжения
- •14.6. Устойчивость плит бетонных дорожных покрытий при повышении температуры
- •14.7. Прочность при усилении жестких покрытий слоем асфальтобетона или цементобетона
- •14.8. Устойчивость против выпирания асфальтобетонного слоя на цементобетонном основании
- •14.9. Устойчивость положения плиты со свободными краями при нагрузке от транспортных средств
- •Список литературы к главе 14
- •Глава 15. Проектирование системы поверхностного и подземного дорожного водоотвода
- •15.1. Система поверхностного и подземного дорожного водоотвода
- •15.2. Нормы допускаемых скоростей течения воды
- •15.3. Определение объемов и расходов ливневых и талых вод с малых водосборов
- •15.4. Гидравлический расчет дорожных канав
- •15.5. Гидравлический расчет отверстий малых мостов и труб
- •15.6. Косогорные сооружения поверхностного водоотвода
- •15.7. Укрепление русел за сооружениями
- •15.8. Расчет дренажа
- •15.9. Некоторые рекомендации к разработке региональных норм стока
- •Глава 16. Проектирование мостовых переходов
- •16.1. Основные сведения о проектировании переходов через большие водотоки
- •16.2. Гидрологические расчеты
- •16.3. Морфометрические расчеты
- •16.4. Прогноз природных деформаций русел рек
- •16.5. Расчет срезок пойменных берегов подмостовых русел и отверстий мостов
- •16.6. Расчет общего размыва
- •16.7. Определение максимальной глубины расчетного общего размыва
- •16.8. Расчет местного размыва у опор мостов
- •16.9. Расчет размывов переходов коммуникаций у мостовых переходов
- •16.10. Расчет характерных подпоров на мостовых переходах
- •Глава 17. Проектирование подходов, регуляционных и укрепительных сооружений
- •17.1. Условия работы пойменных насыпей
- •17.2. Проектирование подходов к мостам
- •17.3. Проектирование оптимальных пойменных насыпей
- •17.4. Расчет устойчивости откосов подтопляемых насыпей
- •17.5. Расчет осадок пойменных насыпей
- •17.6. Расчет скорости осадки насыпей на слабых основаниях
- •17.7. Задачи и принципы регулирования рек у мостовых переходов
- •17.8. Конструкции регуляционных сооружений на мостовых переходах
- •Глава 18. Пересечения и примыкания автомобильных дорог
- •18.1. Общие положения и требования по проектированию пересечений и примыканий в одном уровне
- •18.2. Классификация пересечений автомобильных дорог в разных уровнях и требования к ним
- •18.3. Элементы пересечений автомобильных дорог в разных уровнях
- •18.4. Задачи, решаемые при проектировании развязок движения в разных уровнях
- •18.5. Анализ условий пересечений при проектировании развязок
- •18.6. Пропускная способность развязок в разных уровнях и оценка безопасности движения
- •18.7. Технико-экономическое сравнение вариантов развязок движения
- •Глава 19. Особенности изысканий и проектирования дорог на многолетнемерзлых (вечномерзлых) грунтах
- •19.1. Распространение вечной мерзлоты на территории Российской Федерации
- •19.2. Дорожно-климатическое районирование первой зоны - зоны вечной мерзлоты России
- •19.3. Принципы проектирования и строительства дорог на многолетнемерзлых грунтах
- •19.4. Особенности водно-теплового режима естественных грунтов и земляного полотна автомобильных дорог в районах вечной мерзлоты
- •19.5. Особенности расчета дорожных конструкций нежесткого типа в условиях вечной мерзлоты
- •19.6. Особенности изысканий для строительства дорог на многолетнемерзлых грунтах
- •19.7. Особенности проектирования дорог на многолетнемерзлых грунтах
- •19.8. Земляное полотно автомобильных дорог на многолетнемерзлых грунтах
- •19.9. Требования к грунтам земляного полотна на многолетнемерзлых грунтах
- •19.10. Конструкции земляного полотна автомобильных дорог на многолетнемерзлых грунтах
- •19.11. Водоотводные сооружения
- •19.12. Проектирование земляного полотна и искусственных сооружений на наледных участках
- •Глава 20. Инженерное обустройство автомобильных дорог
- •20.1. Обслуживание дорожного движения
- •20.2. Дорожные знаки
- •20.3. Дорожная разметка
- •20.4. Направляющие устройства
- •20.5. Дорожные ограждения
- •20.6. Освещение автомобильных дорог
- •20.7. Составление схемы обстановки дороги
- •Глава 21. Проектирование реконструкции автомобильных дорог
- •21.1. Особенности реконструкции автомобильных дорог
- •21.2. Особенности изысканий для разработки проектов реконструкции автомобильных дорог
- •21.3. Реконструкция автомобильных дорог в плане и продольном профиле
- •21.4. Земляное полотно при реконструкции автомобильных дорог
- •21.5. Дорожные одежды при реконструкции автомобильных дорог
- •21.6. Особенности организации работ при реконструкции автомобильных дорог
- •Глава 22. Проектирование организации строительства
- •22.1. Цели и задачи проекта организации строительства
- •22.2. Строительный генеральный план
- •22.3. Календарный план строительства
- •22.4. Механизация дорожного строительства
- •22.5. Машины для земляных работ
- •22.6. Машины для уплотнения грунтов и материалов дорожных одежд
- •22.7. Определение потребности в основных строительных машинах, транспортных средствах и трудовых ресурсах
- •Глава 23. Оценка проектных решений при проектировании автомобильных дорог
- •23.1. Система показателей для оценки проектных решений
- •23.2. Определение предельной пропускной способности дороги и коэффициента загрузки движением
- •23.3. Расчет средней скорости движения транспортного потока
- •23.4. Расчет максимальной скорости движения одиночного автомобиля
- •23.5. Определение степени загрязнения придорожной полосы соединениями свинца
- •23.6. Расчет загрязнения атмосферного воздуха выбросами автомобильного транспорта
- •Глава 24. Оценка безопасности движения при проектировании дорог и их реконструкции
- •24.1. Влияние дорожных условий на безопасность движения
- •24.2. Оценка относительной опасности участков дороги и выявление опасных мест методом «коэффициентов относительной аварийности»
- •24.3. Выявление опасных мест метолом «коэффициентов безопасности»
- •24.4. Оценка обеспеченности безопасности движения на пересечениях в одном уровне
- •24.5. Оценка безопасности движения на пересечениях в разных уровнях
- •Раздел третий. Автоматизированное проектирование автомобильных дорог
- •Глава 25. Принципиальные основы автоматизированного проектирования автомобильных дорог и сооружений на них
- •25.1. Понятие о системах автоматизированного проектирования
- •25.2. Средства обеспечения систем автоматизированного проектирования
- •25.3. Функциональная структура сапр
- •25.4. Принципы оптимизации и моделирования при проектировании автомобильных дорог
- •Список литературы к главе 25
- •Глава 26. Система автоматизированного проектирования cad «credo»
- •26.1. Историческая справка
- •26.2. Функциональная структура подсистемы «Линейные изыскания»
- •26.3. Функциональная структура подсистемы «Дороги»
- •Глава 27. Система автоматизированного проектирования «indorcad/road»
- •27.1. Историческая справка
- •27.2. Функциональная структура системы автоматизированного проектирования «IndorCad/Road». Раздел «План»
- •27.3. Раздел «Продольный профиль»
- •27.4. Раздел «Верх земляного полотна»
- •27.5. Раздел «Поперечный профиль»
- •27.6. Графический редактор «IndorDrawing»
- •Глава 28. Автоматизированное проектирование плана автомобильных дорог
- •28.1. Автоматизированное проектирование плана и продольного профиля. Общий методологический подход
- •28.2. Методы «однозначно определенной оси»
- •28.3. Метод «опорных элементов»
- •28.4. Метод «сглаживания эскизной линии трассы»
- •28.5. Методы «свободной геометрии». Сплайн-трассирование
- •Глава 29. Автоматизированное проектирование продольного профиля автомобильных дорог
- •29.1. Метод «опорных точек»
- •29.2. Метод «проекции градиента»
- •29.3. Метод «граничных итераций»
- •29.4. Методы «свободной геометрии»
- •Глава 30. Автоматизированное проектирование оптимальных нежестких дорожных одежд
- •30.1. Особенности автоматизированного проектирования оптимальных нежестких дорожных одежд
- •30.2. Оптимизационный метод проектирования дорожных одежд нежесткого типа
- •30.3. Технология автоматизированного проектирования оптимальных дорожных одежд
- •Глава 31. Автоматизированное проектирование системы поверхностного водоотвода автомобильных дорог
- •31.1. Математическое моделирование стока ливневых вод с малых водосборов
- •31.2. Математическое моделирование стока талых вод с малых водосборов
- •31.3. Расчет отверстий и моделирование работы малых мостов и труб
- •31.4. Проектирование оптимальных водопропускных труб
- •Результаты проектирования оптимального сооружения
- •31.5. Проектирование оптимальной системы поверхностного водоотвода
- •Глава 32. Комплексная методология автоматизированного проектирования мостовых переходов
- •32.1. Принципы автоматизированного проектирования мостовых переходов
- •32.2. Аналитическая аппроксимация и универсальный метод определения расчетных гидрометеорологических характеристик
- •32.3 Комплексная программа расчета отверстий мостов «Рома»
- •32.4. Исходная информация и результаты расчета по программе «Рома»
- •I. Файл названий и свойств объектов расчета
- •II. Основной файл исходных данных
- •III. Файл измененных длин расчетных интервалов
- •IV. Файл измененных проекций длин расчетных интервалов
- •V. Файл измененных высот (отметок) дна русла
- •VI. Файл измененных высот (отметок) геологического ограничения размыву
- •VII. Файл измененных ширин русла
- •VIII. Файл координат типового водомерного графика
- •XIII. Файл фракционного состава донных отложений
- •I. Фактический водомерный график и гидрограф паводка
- •II. Расчетный водомерный график и тахограф паводка
- •III. Результаты расчета
- •32.5. Программа расчета уширений русел на мостовых переходах «Рур»
- •32.6. Исходная информация и результаты расчета по программе «Рур»
- •I. Файл названий объектов расчета
- •II. Основной файл исходных данных
- •III. Файл измененных длин расчетных интервалов
- •IV. Файл измененных проекций длин расчетных интервалов
- •V. Файл координат расчетной многолетней гидрологической характеристики водотока
- •Результаты расчета
- •Глава 33. Методы расчета соединительных рамп
- •33.1. Существующие принципы конструктивного решения участков ответвлений и примыканий соединительных рамп
- •33.2. Переходные кривые, требования к ним и методы их расчета
- •33.3. Расчет элементов соединительных рамп
- •33.4. Проектирование продольного профиля по соединительным рампам
- •33.5. Планово-высотное решение соединительных рамп
- •Глава 34. Оценка проектных решений при автоматизированном проектировании автомобильных дорог
- •34.1. Программы для оценки проектных решений
- •34.2. Построение перспективных изображений автомобильных дорог
- •34.3. Перцептивные изображения автомобильных дорог
- •34.4. Оценка зрительной плавности трассы
- •34.5. Определение показателей транспортно-эксплуатационных качеств автомобильных дорог
- •34.6. Оценка проектных решений автомобильных дорог на основе математического моделирования
- •34.7. Технико-экономическое сравнение вариантов автомобильных дорог и мостовых переходов
15.6. Косогорные сооружения поверхностного водоотвода
Для предупреждения размыва мостов и труб на косогорах, а также и склонов косогоров текущей водой устраивают подводящие и отводящие русла (рис. 15.23) в виде быстротоков, перепадов с водобойными колодцами, консольных водосбросов и т.д.
Рис. 15.23. Косогорные сооружения у малого моста: 1 - естественное русло; 2 - перепады с водобойными колодцами; 3 - мост; 4 - быстроток; 5 - водобойный колодец; 6 - уступ
Искусственные русла проектируют в соответствии с местными условиями, имея в виду следующие характеристики отдельных типов косогорных сооружений:
быстротоки (рис. 15.24, а) применяют на любых уклонах, больше критических. В связи с большой скоростью протекания воды в местах сопряжения быстротока с другими сооружениями необходимо предусматривать устройства гасителей энергии, а сам быстроток укреплять в соответствии со скоростью потока;
Рис. 15.24. Основные типы косогорных сооружений: а - быстроток; б - перепады с водобойными колодцами; в - консольный водосброс
перепады с водобойными колодцами (рис. 15.24, б) применяют главным образом на значительных уклонах (перепады без водобойных колодцев практически не устраивают, так как они могут быть размещены только на небольших уклонах);
консольные водосбросы (рис. 15.24, в), лотки большого уклона, приподнятые на опорах над поверхностью, применяют для пропуска воды над дорогой в том случае, когда устройство водопропускного сооружения под дорожной насыпью оказывается менее целесообразным.
Рис. 15.25. Расчетная схема быстротока: 1 - входной оголовок; 2 - кривая спада
Расчет быстротока (рис. 15.25). Быстротоком называют искусственное открытое русло с уклоном дна больше критического, направляющее быстротекущий поток воды из верхнего участка водовода в нижний. Ширина дна лотка быстротока может быть равной или меньше ширины дна подводящего русла. В последнем случае перед переломом рельефа местности необходимо устраивать переходной участок с учетом особенностей расчета сужающихся бурных потоков. Последовательность гидравлического расчета быстротока следующая:
1. Определяют ширину быстротока по заданным значениям скорости течения воды vo, уклона I и коэффициента шероховатости п:
где
n - коэффициент шероховатости быстротока, назначаемый с учетом аэрации, зависящей от уклона и материала стенок быстротока;
h0 - глубина воды в быстротоке, м;
v0 - допускаемая скорость течения на быстротоке, м/с.
Данная формула выведена при предположении, что гидравлический радиус мало отличается от глубины потока.
2. Определяют глубину воды в конце быстротока:
3. Определяют глубину воды на входе в быстроток из канала с уклоном I < Iкр, которая равна критической:
(15.20)
4. Выясняют условия затопления струи на выходе из быстротока в русло с уклоном меньше критического. Для этого вычисляют вторую сопряженную глубину прыжка:
Если глубина hб в русле за быстротоком больше, чем глубина за прыжком h", то прыжок затоплен, и скорость за быстротоком определяется глубиной потока hб. Если же эта глубина меньше, чем глубина h" (то есть hб < h"), то в целях сокращения участка высоких скоростей в русле за быстротоком следует устроить водобойный уступ (колодец), глубина которого
d = 1,1h" - hб.
Необходимую длину водобойного колодца (от конца быстротока до конца водобойного уступа) рассчитывают по формуле подпертого прыжка:
lкол = 3(h" - h0).
Расчет перепада с водобойным колодцем. Перепадом называют сооружение, сопрягающее два участка водовода, расположенных на разных уровнях. Он может быть одноступенчатым или многоступенчатым. В практике дорожного строительства, как правило, применяют перепады только колодезного типа.
Перепад с водобойным колодцем состоит из следующих элементов (рис. 15.26): входа 1, стенки падения 2, водобоя 3 и выхода-уступа 4, если перепад одиночный, или водобойной стенки, если перепад один из цепи перепадов с колодцами.
Рис. 15.26. Одиночный колодец (уступ): 1 - вход; 2 - стенка падения; 3 - водобой; 4 - выход-уступ
Схема гидравлического расчета перепада с водобойным колодцем следующая (рис. 15.27).
Рис. 15.27. Расчетная схема многоступенчатого перепада
1. Назначают ширину водобойного колодца b, исходя из нормы расхода 0,5-1,0 м3/с на 1 м ширины колодца. Чаще всего ширину колодца делают одинаковой с отверстием водопропускного сооружения. Высоту перепада р назначают путем деления общего падения уровня на участке расположения перепадов на число перепадов, назначаемое сначала ориентировочно.
2. Определяют глубину воды на входе, равную критической, по формуле (15.20).
3. Определяют глубину в сжатом сечении падающей струи. Для этого подсчитывают энергию сечения на входе, задаваясь ориентировочно глубиной колодца d:
Т0 = 1,5hкр + p + d.
4. Определяют относительную энергию:
5. По графику (рис. 15.28) определяют относительную глубину после прыжка в сжатом сечении, задавая коэффициент скорости j:
Рис. 15.28. График для расчета перепадов
вычисляют глубину после прыжка
Порядок пользования графиком показан стрелками на рис. 15.28.
6. Определяют глубину воды перед водобойной стенкой
H = H + d = 1,7hкр + d.
7. Проверяют достаточность заданной глубины колодца. Необходимо, чтобы
(15.21)
Если это равенство не удовлетворяется, то глубину колодца, заданную ориентировочно, изменяют и расчет повторяют снова, пока условие (15.21) не будет выполнено.
8. После расчета глубины колодца определяют минимально допустимую длину колодца
lкол = lпол + lпр, где
Здесь vкр - скорость в сечении на входе, м/с;
у - высота падения струи;
y = p + d + 0,5hкр;
- глубина после
прыжка в сжатом сечении;
- глубина в сжатом
сечении в колодце, определяемая по
графику на рис. 15.28, по которому аналогично
величине
определяется величина
и глубина воды в сжатом сечении
9. Длина водобойной стенки (толщина водосливного порога)
lст = 3hкр.
10. Проверяют вписывание перепада в профиль местности, для чего определяют уклон перепада:
Этот уклон должен быть не меньше того, которым характеризуется косогор. Если же уклон косогора Iм меньше уклона перепада, то длину каждого колодца увеличивают, что только улучшает условия затопления струи. Длина колодца, соответствующая заданному уклону местности,
Расчет консольного перепада. Консольный перепад это лоток с большим уклоном, применяемый на опорах над поверхностью земли (рис. 15.29), в конце которого устраивают струенаправляющий носок с обратным или нулевым уклоном. Такого типа сооружения применяют для сброса воды через полотно дороги и в овраги на весьма крутых косогорах.
Рис. 15.29. Схема к расчету консольного водосброса
Обратный уклон струенаправляющего носка принимают
iн £ 0,25 (подъем b £ 15°), а длину носка lн = 1-2 м.
Гидравлический расчет консольного перепада заключается в определении глубины в конце быстротока h, дальности полета струи lпад и размеров воронки размыва в месте падения струи.
1. Глубину в конце носка применяют равной глубине быстротока (методика определения глубины h такая же, как у быстротока). Как правило, эту глубину определяют по известной формуле гидравлики для неравномерного движения воды, рассматривая два смежных сечения с глубиной h1 и h2 и длиной l между ними:
i0l/h0 = h2/h0 - h1/h0 - (1 - jcp)[j(h2/h0 - jh1/h0)], где
i0 - уклон дна рассматриваемого участка русла, ‰;
Сср - средний коэффициент Шези;
Вср - средняя ширина потока по верху, м;
cср - средний смоченный периметр.
2. Дальность падения струи без учета аэрации и сопротивлений воздуха определяют по приближенной формуле:
где
v - скорость потока в конечном сечении струенаправляющего носка, м/с;
j - коэффициент скорости;
Р - высота перепада, м.
При горизонтальном носке, т.е. при b = 0°
Фактическая дальность полета струи оказывается на 10-20 % меньше, чем определенная по формулам свободного падения.
3. Снос струи боковым ветром для параболического поперечного сечения определяют по формуле:
где
vв - скорость ветра, м/с;
Р - высота перепада, м;
Q - расход перепада, м3/с.
Учет сноса струи особенно необходим, если за перепадом устраивают водобойные сооружения.
4. Глубину воронки размыва hвp рекомендуют определять по формуле:
где
hнб - бытовая глубина нижнего бьефа, м;
s = 1,05-1,1 - коэффициент затопления прыжка;
- сопряженная глубина с глубиной сжатого сечения, определяемая при расчете водобойных колодцев, м.
Глубину в сжатом сечении на дне воронки размыва определяют, исходя из удельной энергии:
Ео = Р + h + hвp + an2/2g.
Задаваясь глубиной hвp находят сопряженные глубины и при вычисленном значении hc проверяют правильность заданного значения hвp.
Размеры воронки размыва в плане определяют приближенно, полагая ее форму конусоидальной с уклонами откосов 1:1.
Для учета свойств грунта, от которых зависят размеры воронки размыва, глубину воронки корректируют по формуле:
hриспр = ehвp, где
e - коэффициент, учитывающий свойства грунта (для плотного лёсса e = 2, для гравелисто-песчаных грунтов e = 1,5-2,5).
По исследованиям Патрашева глубину воронки размыва рекомендуют определять
hвp = 3,9q1/2(z0/dз)1/4 - hнб, где
q - расход на единицу ширины конечного сечения носка консоли;
z0 = P + h - hнб + an2/2g;
dз - диаметр частицы грунта, мельче которой в данном грунте содержится 90 % по массе.
Для консольных перепадов рекомендуют также следующую формулу:
где
dрас = dз /a; a = 0,2 мм.