
- •2.1.Умножение матриц. Свойстваумножения.
- •12.1.Понятие вектора. Линейные операции над векторами.
- •13.1. Базис и координаты вектора.
- •14.1. Прямоугольн система координат. Линейн операц над векторами в лин форме.
- •4.1. Миноры, алгебраические дополнения. Теорем о разложении определителя по элементам ряда Миноры и алгебраические дополнения. Теорема Лапласа
- •3.1 Определители 2-го и 3-го порядков. Понятие определителя n-го порядка.
- •5.1 Свойства Определителей
- •16.1. Векторное произведение векторов.
- •17.1. Смешанное произведение векторов и его свойства.
- •1.1.Матрицы (основные понятия). Линейные операции над матрицами, их свойства
- •6.1.Обратная матрица. Необходимое и достаточное условия существования обратной матрицы
- •10.1 Теорема Конекера─Капелли. Решение произвольных систем.
- •8.1.Невырожденные системы.Фор-ы Краме. Метод Гаусса.
- •Решение систем линейных уравнений методом Гаусса
- •9.1 Ранг матрицы. Теорема об инвариантности ранга матрицы.
- •7.1Системы линейных уравнений. Основные определения. Матричная запись
- •1.2. Урав плоскости, проходящей через данную точку перпендик-рно даному вектору. Общ урав плоскости. Урав плоскости в отрезках.
- •4.2. Взаимное расположение плоскостей.
- •5.1. Канонические и параметрические уравн прямой. Урав прямой, проходящ через две точки.
- •6.2 Сведение общего урав. Прямой в пространсве к каноническим уравнениям.
- •11.2. Взаимн распол-ние прямй и плоскоси. Угол между прямой и плоскостью
- •3.2 Нормальное уравнение плоскости. Расстояние от точки до плоскости.
- •Расстояние от точки до плоскости
- •Теорема о единственности предела
- •11. Теоремы об эквивалентных бесконечно малых. Определение
- •6.3.Бесконечно малые величины и их св-ва
- •1.3 Числовая последовательность и ее предел.
- •8. 3. 1Й, замечательный предел.
- •9.3 Второй замечательный предел
- •1 2.3. Непрерывность функции в точке. Действия над непрерыв функциями
- •13. Классификация точек разрыва.
- •5.3 Свойства бесконечно малых функций:
- •4.4 Бесконечно большие и бесконечно малые функции. Связь между ними
- •2. Теорема об ограниченности сходящеся последовательности. Теоре Вейерштрасса.
- •14.3. Односторонняя непрерывность. Свойства непрерывных на отрезке функций
- •15. Раскрытие неопределенностей других видов по правилу Лопиталя.
- •19. Выпуклость, вогнутость графика функции; достаточные условия.
- •23. Наименьшее и наибольшее значения непрерывной на отрезке функции. Нахождение наибольшего и наименьшего значений непрерывной функции на отрезке
- •11.4 Применение дифференциала в приближенных вычислениях.
- •12.4 Дифференциалы высших порядков. Дифференциал высшего порядка функции одной переменной
- •1.4 Производная. Геометрический и механический смысл.
- •3.4. Основные правила дифференцирования.
- •8.4 Логарифмическое дифференцирование.
- •10.4. Дифференциал ф-ции и его геометрический смысл. Св-ва дифференциала.
- •13.4.Теорема Ролля. Лагранжа. Коши
- •6.4.Производная ф-и задана неявно
- •16.4. Экстремумы функции. Необходимое условие экстремума (теорема Ферма).
- •21.4. Асимптоты.
- •22.4. Общая схема исследования ф-ции необходима для построения графика.
- •2.4 Теорема: Связь между непрерывной и дифференцируемой функцией.
- •9.4Производная высших порядков.
- •14.4.Раскрытие неопределенностей вида 0/0 (правило Лопиталя).
- •15.4 Раскрытие неопределенностей других видов по правилу Лопиталя.
- •17.4 Теорема: Достаточный признак возрастания функции.
- •18.4 Достаточные условия существования экстремума.
- •19.4 Выпуклость графика функции.
- •7.4 Производная ф-и задана и параметрически
- •6.4.Производная ф-и задана неявно
- •14.2. Парабола и ее свойства.
- •12.2.Эллипс и его св-ва:
- •13.2. Гипербола и ее св-ва.
- •15. Скалярное произведение векторов и его свойства.
Расстояние от точки до плоскости
Расстояние от точки до плоскости — это наименьшее из расстояний между этой точкой и точками плоскости. расстояние от точки до плоскости равно длине перпендикуляра, опущенного из этой точки на плоскость.
Расстояние
от
точки
,
до плоскости, заданной уравнением
,
вычисляется по формуле:
2,3
Уравнение
плоскости, проходящей через три заданные
точки
,
не
лежащие на одной прямой:
(смешанное произведение векторов), иначе
7.2. Способы задания прямой на плоскости: а)прям,проход-я через точку перпенд-но данному вектору; б)общ уравн в) урав в отрезках; г) урав прямой с угловым коэфф-нтом; д) урав прям, проходящ через точку в данном направлении.
Сначала запишем ур-е прямой, проходящей через заданную точку заданному вектору.
M
0(x0,y0)
M0M{x-x0,y-y0}
n*M0M=0
A(x-x0)+B(y-y0)=0
Ax+By-Ax0-By0=0
-Ax0-By0=C
Ax+By+C=0-общее уравнение прямой на плоскости.
ур-е прямой с угловым коэффициентом k.
П
усть
даны 2 точки M1(x1,y1),
M2(x2,y2)
и x1x2,
y1y2.
Для составления уравнения прямой М1М2
запишем уравнения пучка прямых,
проходящих через точку М1:
y-y1=k(x-x1).
Т.к. М2лежит
на данной прямой, то чтобы выделить ее
из пучка, подставим координаты точки
М2
в уравнение пучка М1:
y-y1=k(x-x1)
и найдем k:
Теперь вид искомой прямой имеет вид:
8
.2.
Взаимн
располож прямых на пло-ти. Угол между
прямыми
а)
S1{l1,m1} S2{l2,m2},
или
p:y=k1x+b1, k1=tg1
q:y=k2x+b2, k2=tg2 =>tg=tg(2-1)=
=(tg2-tg1)/(1+ tg1tg2)=
=(k2-k1)/(1+k1k2).
б) p||q, tg=0, k1=k2
в)pq,то
9.2. Нормальное уравнение прямой. Расстояние от точки до прямой.
1. Ax+By+C=0, M0(x0,y0)
2. Пусть плоскость задана ур-ем Ax+By+Cz+D=0
15.2. Общее ур-е линии второго порядка
Кривые 2го порядка описываются с помощью общего ур-я:
Ax2+2Bxy+Cy2+2Dx+2Ey+F=0, где
а) Каноническое ур-е эллипса
-
Каноническое ур-е эллипса
Если a=b, то x2+b2=a2 - ур-е окружности.
б) Ур-е гиперболы: x2/a2-y2/b2=1
в) ур-е параболы: y2=2px или y=ax2
г) ур-е сферы: x2+y2+z2=а2 (r2=(x-a)2+(y-b)2+(z-c)2)
д) ур-е эллипса: x2/a2-y2/b2+z2/c2=1
16.2. Понятие о поверхностях 2го порядка.
Алгебраическим ур-ем 2ой степени наз. ур-е вида Ax2+Bxy+Cy2+Dx+y+F=0, где A,B,C,D,,F - действительные числа
Линии, которые в системе декартовых координат определяются алгебраическим ур-ем 2ой степени наз. линиями 2го порядка.
.3. 3. Предел функции при xa и при x. Односторонние пределы.
f(x)
A +
A
A -
a - a a + x
Пусть функция f(x)
определена в некоторой окрестности
точки х = а (т.е. в самой точке х = а функция
может быть и не определена)Определение.
Число А называется пределом
функции f(x)
при ха,
если для любого >0
существует такое число >0,
что для всех х таких, что0 < x
- a
<
верно неравенство f(x)
- A<
.
То же определение может быть записано
в другом виде: Если а -
< x
< a
+ ,
x
a,
то верно неравенство А -
< f(x)
< A
+ .
Запись предела функции в точке:
Опр.
Если f(x)
A1
при х
а только при x
< a,
то
- называется пределом
функции f(x)
в точке х = а слева,
а если f(x)
A2
при х
а только при x
> a,
то
называется пределом
функции f(x)
в точке х = а справа.
Приведенное выше определение относится к случаю, когда функция f(x) не определена в самой точке х = а, но определена в некоторой сколь угодно малой окрестности этой точки. Пределы А1 и А2 называются также односторонними пределами функции f(x) в точке х = а.
7.3 Теорема об единственности предела фун-и. Предел сумы, произве-ия и частного функций.