
- •2.1.Умножение матриц. Свойстваумножения.
- •12.1.Понятие вектора. Линейные операции над векторами.
- •13.1. Базис и координаты вектора.
- •14.1. Прямоугольн система координат. Линейн операц над векторами в лин форме.
- •4.1. Миноры, алгебраические дополнения. Теорем о разложении определителя по элементам ряда Миноры и алгебраические дополнения. Теорема Лапласа
- •3.1 Определители 2-го и 3-го порядков. Понятие определителя n-го порядка.
- •5.1 Свойства Определителей
- •16.1. Векторное произведение векторов.
- •17.1. Смешанное произведение векторов и его свойства.
- •1.1.Матрицы (основные понятия). Линейные операции над матрицами, их свойства
- •6.1.Обратная матрица. Необходимое и достаточное условия существования обратной матрицы
- •10.1 Теорема Конекера─Капелли. Решение произвольных систем.
- •8.1.Невырожденные системы.Фор-ы Краме. Метод Гаусса.
- •Решение систем линейных уравнений методом Гаусса
- •9.1 Ранг матрицы. Теорема об инвариантности ранга матрицы.
- •7.1Системы линейных уравнений. Основные определения. Матричная запись
- •1.2. Урав плоскости, проходящей через данную точку перпендик-рно даному вектору. Общ урав плоскости. Урав плоскости в отрезках.
- •4.2. Взаимное расположение плоскостей.
- •5.1. Канонические и параметрические уравн прямой. Урав прямой, проходящ через две точки.
- •6.2 Сведение общего урав. Прямой в пространсве к каноническим уравнениям.
- •11.2. Взаимн распол-ние прямй и плоскоси. Угол между прямой и плоскостью
- •3.2 Нормальное уравнение плоскости. Расстояние от точки до плоскости.
- •Расстояние от точки до плоскости
- •Теорема о единственности предела
- •11. Теоремы об эквивалентных бесконечно малых. Определение
- •6.3.Бесконечно малые величины и их св-ва
- •1.3 Числовая последовательность и ее предел.
- •8. 3. 1Й, замечательный предел.
- •9.3 Второй замечательный предел
- •1 2.3. Непрерывность функции в точке. Действия над непрерыв функциями
- •13. Классификация точек разрыва.
- •5.3 Свойства бесконечно малых функций:
- •4.4 Бесконечно большие и бесконечно малые функции. Связь между ними
- •2. Теорема об ограниченности сходящеся последовательности. Теоре Вейерштрасса.
- •14.3. Односторонняя непрерывность. Свойства непрерывных на отрезке функций
- •15. Раскрытие неопределенностей других видов по правилу Лопиталя.
- •19. Выпуклость, вогнутость графика функции; достаточные условия.
- •23. Наименьшее и наибольшее значения непрерывной на отрезке функции. Нахождение наибольшего и наименьшего значений непрерывной функции на отрезке
- •11.4 Применение дифференциала в приближенных вычислениях.
- •12.4 Дифференциалы высших порядков. Дифференциал высшего порядка функции одной переменной
- •1.4 Производная. Геометрический и механический смысл.
- •3.4. Основные правила дифференцирования.
- •8.4 Логарифмическое дифференцирование.
- •10.4. Дифференциал ф-ции и его геометрический смысл. Св-ва дифференциала.
- •13.4.Теорема Ролля. Лагранжа. Коши
- •6.4.Производная ф-и задана неявно
- •16.4. Экстремумы функции. Необходимое условие экстремума (теорема Ферма).
- •21.4. Асимптоты.
- •22.4. Общая схема исследования ф-ции необходима для построения графика.
- •2.4 Теорема: Связь между непрерывной и дифференцируемой функцией.
- •9.4Производная высших порядков.
- •14.4.Раскрытие неопределенностей вида 0/0 (правило Лопиталя).
- •15.4 Раскрытие неопределенностей других видов по правилу Лопиталя.
- •17.4 Теорема: Достаточный признак возрастания функции.
- •18.4 Достаточные условия существования экстремума.
- •19.4 Выпуклость графика функции.
- •7.4 Производная ф-и задана и параметрически
- •6.4.Производная ф-и задана неявно
- •14.2. Парабола и ее свойства.
- •12.2.Эллипс и его св-ва:
- •13.2. Гипербола и ее св-ва.
- •15. Скалярное произведение векторов и его свойства.
1.2. Урав плоскости, проходящей через данную точку перпендик-рно даному вектору. Общ урав плоскости. Урав плоскости в отрезках.
Ур-е в плоскости, проходящей через данную точку, перпендикулярно заданному вектору.
N
-вектор
нормали
M0M{x-x0,y-y0,z-z0}
Для того, чтобы точка MP, необходимо и достаточно чтобы вектора NM0M(т.е. N*M0M=0)
A(x-x0)+B(y-y0)+С(z-z0)=0 - ур-е плоскости, проходящей через данную точку вектору.
Общее уравнение плоскости.
Ax+By+Сz-Ax0-By0-Сz0=0
-Ax0-By0-Сz0=D, где D=Ax+By+Сz
Ax+By+Сz+D=0
Частный случай:
Если D=0, то Ax+By+Сz=0(проходит ч/з 0;0)
Если A=0, то By+Сz+D=0
Если B=0, то Ax +Сz+D=0
Если C=0, то Ax+By+D=0
Если A=B=0, то Сz+D=0
Если A=C=0, то By+D=0
Если A=D=0, то By+Сz=0
Если B=D=0, то Ay+Сz=0
Уравнение плоскости в отрезках
где a, b, c - величины отрезков, отсекаемых плоскостью на осях координат.
4.2. Взаимное расположение плоскостей.
Угол между плоскостями
N1,N2-нормальные векторы плоскости.
P:A1x+B1y+C1z+D1=0
Q:A2x+B2y+C2z+D2=0
PQ{A1,B1,C1}
QN2{A2,B2,C2}
Угол между плоскостями
1)Пусть PQ<=>N1N2
A1A2+B1B2+C1C2=0 условие перпендикулярности PQ.
2) Пусть PQ<=> N1N2
A1/A2=B1/B2=C1/C2- Условие параллельности 2х плоскостей.
A1/A2=B1/B2=C1/C2=D1/D2- Условие совпадения 2х плоскостей.
5.1. Канонические и параметрические уравн прямой. Урав прямой, проходящ через две точки.
l m n
S{x2-x1,y2-y1,z2-z1}
Каноническое уравнение прямой в пространстве:
где
—
координаты
некоторой фиксированной точки
,
лежащей на прямой,
-
координаты
вектора,
коллинеарного
этой прямой.
Параметрические уравнения прямой могут быть записаны в виде:
где t — производный параметр, при этом
6.2 Сведение общего урав. Прямой в пространсве к каноническим уравнениям.
P:A1x+B1y+C1z+D1=0
Q:A2x+B2y+C2z+D2=0
Общее ур-е прямой в пространстве.
Для того, чтобы перейти от общего к каноническому ур-ю прямой, надо задать начальную точку и направляющий вектор:
1. Найдем начальную точку:
Z=0
M0(x0,y0,0), т.к. Z=0
2. Найдем направляющий вектор S-?
PN1{A1,B1,C1}
QN1{A2,B2,C2}
S=N1*N2
11.2. Взаимн распол-ние прямй и плоскоси. Угол между прямой и плоскостью
P:A1x+B1y+C1z+D1=0N1{A1,B1}
Q:A2x+B2y+C2z+D2=0N2{A2,B2}
а)
то
Взаимное расположение прямой и плоскости
Плоскость
и
прямая
1)
пересекаются
2)
прямая лежит в плоскости
3)
параллельны
Если
то
случаи 1 - 3 имеют место, когда:
1)
2)
3)
3.2 Нормальное уравнение плоскости. Расстояние от точки до плоскости.
в векторной форме:
где
-
единичный вектор,
—
расстояние П. от начала координат.
Уравнение (2) может быть получено из
уравнения (1) умножением на нормирующий
множитель
(знаки
и
противоположны).