
- •2.1.Умножение матриц. Свойстваумножения.
- •12.1.Понятие вектора. Линейные операции над векторами.
- •13.1. Базис и координаты вектора.
- •14.1. Прямоугольн система координат. Линейн операц над векторами в лин форме.
- •4.1. Миноры, алгебраические дополнения. Теорем о разложении определителя по элементам ряда Миноры и алгебраические дополнения. Теорема Лапласа
- •3.1 Определители 2-го и 3-го порядков. Понятие определителя n-го порядка.
- •5.1 Свойства Определителей
- •16.1. Векторное произведение векторов.
- •17.1. Смешанное произведение векторов и его свойства.
- •1.1.Матрицы (основные понятия). Линейные операции над матрицами, их свойства
- •6.1.Обратная матрица. Необходимое и достаточное условия существования обратной матрицы
- •10.1 Теорема Конекера─Капелли. Решение произвольных систем.
- •8.1.Невырожденные системы.Фор-ы Краме. Метод Гаусса.
- •Решение систем линейных уравнений методом Гаусса
- •9.1 Ранг матрицы. Теорема об инвариантности ранга матрицы.
- •7.1Системы линейных уравнений. Основные определения. Матричная запись
- •1.2. Урав плоскости, проходящей через данную точку перпендик-рно даному вектору. Общ урав плоскости. Урав плоскости в отрезках.
- •4.2. Взаимное расположение плоскостей.
- •5.1. Канонические и параметрические уравн прямой. Урав прямой, проходящ через две точки.
- •6.2 Сведение общего урав. Прямой в пространсве к каноническим уравнениям.
- •11.2. Взаимн распол-ние прямй и плоскоси. Угол между прямой и плоскостью
- •3.2 Нормальное уравнение плоскости. Расстояние от точки до плоскости.
- •Расстояние от точки до плоскости
- •Теорема о единственности предела
- •11. Теоремы об эквивалентных бесконечно малых. Определение
- •6.3.Бесконечно малые величины и их св-ва
- •1.3 Числовая последовательность и ее предел.
- •8. 3. 1Й, замечательный предел.
- •9.3 Второй замечательный предел
- •1 2.3. Непрерывность функции в точке. Действия над непрерыв функциями
- •13. Классификация точек разрыва.
- •5.3 Свойства бесконечно малых функций:
- •4.4 Бесконечно большие и бесконечно малые функции. Связь между ними
- •2. Теорема об ограниченности сходящеся последовательности. Теоре Вейерштрасса.
- •14.3. Односторонняя непрерывность. Свойства непрерывных на отрезке функций
- •15. Раскрытие неопределенностей других видов по правилу Лопиталя.
- •19. Выпуклость, вогнутость графика функции; достаточные условия.
- •23. Наименьшее и наибольшее значения непрерывной на отрезке функции. Нахождение наибольшего и наименьшего значений непрерывной функции на отрезке
- •11.4 Применение дифференциала в приближенных вычислениях.
- •12.4 Дифференциалы высших порядков. Дифференциал высшего порядка функции одной переменной
- •1.4 Производная. Геометрический и механический смысл.
- •3.4. Основные правила дифференцирования.
- •8.4 Логарифмическое дифференцирование.
- •10.4. Дифференциал ф-ции и его геометрический смысл. Св-ва дифференциала.
- •13.4.Теорема Ролля. Лагранжа. Коши
- •6.4.Производная ф-и задана неявно
- •16.4. Экстремумы функции. Необходимое условие экстремума (теорема Ферма).
- •21.4. Асимптоты.
- •22.4. Общая схема исследования ф-ции необходима для построения графика.
- •2.4 Теорема: Связь между непрерывной и дифференцируемой функцией.
- •9.4Производная высших порядков.
- •14.4.Раскрытие неопределенностей вида 0/0 (правило Лопиталя).
- •15.4 Раскрытие неопределенностей других видов по правилу Лопиталя.
- •17.4 Теорема: Достаточный признак возрастания функции.
- •18.4 Достаточные условия существования экстремума.
- •19.4 Выпуклость графика функции.
- •7.4 Производная ф-и задана и параметрически
- •6.4.Производная ф-и задана неявно
- •14.2. Парабола и ее свойства.
- •12.2.Эллипс и его св-ва:
- •13.2. Гипербола и ее св-ва.
- •15. Скалярное произведение векторов и его свойства.
6.1.Обратная матрица. Необходимое и достаточное условия существования обратной матрицы
Определим операцию деления матриц как операцию, обратную умножению.Опр. Если существуют квадратные матрицы Х и А одного порядка, удовлетворяющие условию:
XA
= AX = E,где Е - единичная матрица того же
самого порядка, что и матрица А, то
матрица Х называется обратной
к
матрице А и обозначается А-1.Каждая
квадратная матрица с определителем,
не равным нулю имеет обратную матрицу
и притом только одну. Рассмотрим общий
подход к нахождению обратной матрицы.Исходя
из определения произведения матриц,
можно записать:AX
= E
,
i=(1,n),
j=(1,n),
eij
=
0, i
j,
eij
=
1, i = j .Таким образом, получаем систему
уравнений:
Решив эту систему, находим элементы
матрицы Х.
10.1 Теорема Конекера─Капелли. Решение произвольных систем.
10. Правило решения произвольной системы линейных уравнений
1. Найти ранги основной и расширенной матриц системы. Если r(A)≠r(A), то система несовместна.
2. Если r(A)=r(A)=r, система совместна. Найти какой-либо базисный минор порядка r (напоминание: минор, порядок которого определяет ранг матрицы, называется базисным). Взять r уравнений, из коэффициентов которых составлен базисный минор (остальные уравнения отбросить). Неизвестные, коэффициенты которых входят в базисный минор, называют главными и оставляют слева, а остальные n-r неизвестных называют свободными и переносят в правые части уравнений.
3. Найти выражения главных неизвестных через свободные. Получено общее решение системы.
4. Придавая свободным неизвестным произвольные значения, получим соответствующие значения главных неизвестных. Таким образом можно найти частные решения исходной системы уравнений.
8.1.Невырожденные системы.Фор-ы Краме. Метод Гаусса.
Реш невырожд-ных линейн сис-м. Форму Краме
Пусть дана система n линейных уравнений с n неизвестными
или в матричной форме А*Х=В.
Основная матрица А такой системы квадратная. Определитель этой матрицы
называется определителем системы. Если определитель системы отличен от нуля, то система называется невырожденной.
Найдем решение данной системы уравнений в случае
Умножив обе части уравнения А*Х=В слева на матрицу A-1, получим
A-1*A*X=A-1*B Поскольку. A-1*A=E и Е*Х=Х , то
X=A-1*B
Отыскание решения системы по формуле называют матричным способом решения системы.
Матричное равенство (запишем в виде
то есть
Отсюда следует, что
Но
есть
разложение определителя
по элементам первого столбца. Определитель получается из определителя путем замены первого столбца коэффициентов столбцом из свободных членов. Итак,
Аналогично:
,
где 2 получен из путем замены второго столбца коэффициентов столбцом из свободных членов:
,...,
Формулы
называются формулами Крамера.
Итак, невырожденная система n линейных уравнений с n неизвестными имеет единственное решение, которое может быть найдено матричным способом либо по формулам Крамера