Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матем шпоры.ок вариант.docx
Скачиваний:
33
Добавлен:
15.04.2019
Размер:
734.39 Кб
Скачать

16.1. Векторное произведение векторов.

Векторным произведением векторов и называется вектор , удовлетворяющий следующим условиям:1) , где  - угол между векторами и ,

2) вектор ортогонален векторам и

3 ) , и образуют правую тройку векторов.Обозначается: или .

Свойства векторного произведения векторов:

1) ;2) , если  или = 0 или = 0;

3) (m ) = (m ) = m(  );

4) ( + ) =  +  ;

5) Если заданы векторы (xa, ya, za) и (xb, yb, zb) в декартовой прямоугольной системе координат с единичными векторами , то  = 6) Геометрическим смыслом векторного произведения векторов является площадь параллелограмма, построенного на векторах и .

17.1. Смешанное произведение векторов и его свойства.

Смешанным произведением векторов наз. векторно-скалярное произведение, являющееся числом: a*b*c=[a*b]*c=a*[b*c], где

a={ax,ay,az}

b={bx,by,bz}

c={cx,cy,cz}

Св-ва: 1. При перестановке 2х сомножителей:

a*b*c=-b*c*a

2. не меняется при перестановке циклических сомножителей:

a*b*c=c*a*b=b*c*a

3.а)(Геометрич. смысл) необходимым и достаточным условием компланарности 3х векторов явл. равенство a*b*c=0

б)если некомпланарные вектора a,b,c привести к 1 началу, то |a*b*c|=Vпараллепипеда, построенного на этих векторах

если a*b*c>0, то тройка a,b,c - правая

если a*b*c<0, то тройка a,b,c - левая

1.1.Матрицы (основные понятия). Линейные операции над матрицами, их свойства

Матрицей наз прямоуг таблица чисел, содерж m-строк и n-столбцов. Матрицы равны между собой, если равны соответств элементы этих матриц. Матрица, в которой m=n наз квадратной или n-ого порядка. Квадр матрица, у которой все элементы, кроме элементов гл диагонали, равны 0 еаз диагональной. Диаг матрица, у которой каждый элемент главной диаг =1 наз единичной. Квадратная матрица наз треуг, если все элементы, расположенные по одну сторону её гл диаг =0. Матрица, у которой все числа, стоящие на гл диаг не нулевые, а также некоторое кол ненулевых строк, наз трапециевидной. Матрица, содерж один столбец или строку, наз вектором из Rn пр-ва. Действия. Сложение – только для матриц одинакового размера. Умножение на число. Множества матриц одинакового размера обознач Mm*n. Тогда введённое на этом мн-ве операции сложения и умнож на число превращ Mm*n в линейное пр-во, векторами которого явл матрицы m*n. Умножение на вектор-столбец. Для умножения матрицы на вектор-столбец надо, чтобы число столбцов матрицы было равно числу координат вектора. Две матрицы наз эквивалентными, если одна из них получена из другой с помощью эл. Преобраз. Любую матрицу можно привести к канонической.