
- •2.1.Умножение матриц. Свойстваумножения.
- •12.1.Понятие вектора. Линейные операции над векторами.
- •13.1. Базис и координаты вектора.
- •14.1. Прямоугольн система координат. Линейн операц над векторами в лин форме.
- •4.1. Миноры, алгебраические дополнения. Теорем о разложении определителя по элементам ряда Миноры и алгебраические дополнения. Теорема Лапласа
- •3.1 Определители 2-го и 3-го порядков. Понятие определителя n-го порядка.
- •5.1 Свойства Определителей
- •16.1. Векторное произведение векторов.
- •17.1. Смешанное произведение векторов и его свойства.
- •1.1.Матрицы (основные понятия). Линейные операции над матрицами, их свойства
- •6.1.Обратная матрица. Необходимое и достаточное условия существования обратной матрицы
- •10.1 Теорема Конекера─Капелли. Решение произвольных систем.
- •8.1.Невырожденные системы.Фор-ы Краме. Метод Гаусса.
- •Решение систем линейных уравнений методом Гаусса
- •9.1 Ранг матрицы. Теорема об инвариантности ранга матрицы.
- •7.1Системы линейных уравнений. Основные определения. Матричная запись
- •1.2. Урав плоскости, проходящей через данную точку перпендик-рно даному вектору. Общ урав плоскости. Урав плоскости в отрезках.
- •4.2. Взаимное расположение плоскостей.
- •5.1. Канонические и параметрические уравн прямой. Урав прямой, проходящ через две точки.
- •6.2 Сведение общего урав. Прямой в пространсве к каноническим уравнениям.
- •11.2. Взаимн распол-ние прямй и плоскоси. Угол между прямой и плоскостью
- •3.2 Нормальное уравнение плоскости. Расстояние от точки до плоскости.
- •Расстояние от точки до плоскости
- •Теорема о единственности предела
- •11. Теоремы об эквивалентных бесконечно малых. Определение
- •6.3.Бесконечно малые величины и их св-ва
- •1.3 Числовая последовательность и ее предел.
- •8. 3. 1Й, замечательный предел.
- •9.3 Второй замечательный предел
- •1 2.3. Непрерывность функции в точке. Действия над непрерыв функциями
- •13. Классификация точек разрыва.
- •5.3 Свойства бесконечно малых функций:
- •4.4 Бесконечно большие и бесконечно малые функции. Связь между ними
- •2. Теорема об ограниченности сходящеся последовательности. Теоре Вейерштрасса.
- •14.3. Односторонняя непрерывность. Свойства непрерывных на отрезке функций
- •15. Раскрытие неопределенностей других видов по правилу Лопиталя.
- •19. Выпуклость, вогнутость графика функции; достаточные условия.
- •23. Наименьшее и наибольшее значения непрерывной на отрезке функции. Нахождение наибольшего и наименьшего значений непрерывной функции на отрезке
- •11.4 Применение дифференциала в приближенных вычислениях.
- •12.4 Дифференциалы высших порядков. Дифференциал высшего порядка функции одной переменной
- •1.4 Производная. Геометрический и механический смысл.
- •3.4. Основные правила дифференцирования.
- •8.4 Логарифмическое дифференцирование.
- •10.4. Дифференциал ф-ции и его геометрический смысл. Св-ва дифференциала.
- •13.4.Теорема Ролля. Лагранжа. Коши
- •6.4.Производная ф-и задана неявно
- •16.4. Экстремумы функции. Необходимое условие экстремума (теорема Ферма).
- •21.4. Асимптоты.
- •22.4. Общая схема исследования ф-ции необходима для построения графика.
- •2.4 Теорема: Связь между непрерывной и дифференцируемой функцией.
- •9.4Производная высших порядков.
- •14.4.Раскрытие неопределенностей вида 0/0 (правило Лопиталя).
- •15.4 Раскрытие неопределенностей других видов по правилу Лопиталя.
- •17.4 Теорема: Достаточный признак возрастания функции.
- •18.4 Достаточные условия существования экстремума.
- •19.4 Выпуклость графика функции.
- •7.4 Производная ф-и задана и параметрически
- •6.4.Производная ф-и задана неявно
- •14.2. Парабола и ее свойства.
- •12.2.Эллипс и его св-ва:
- •13.2. Гипербола и ее св-ва.
- •15. Скалярное произведение векторов и его свойства.
16.1. Векторное произведение векторов.
Векторным
произведением векторов
и
называется вектор
,
удовлетворяющий следующим условиям:1)
,
где
- угол между векторами
и
,
2) вектор ортогонален векторам и
3
)
,
и
образуют правую тройку векторов.Обозначается:
или
.
Свойства векторного произведения векторов:
1)
;2)
,
если
или
=
0 или
=
0;
3) (m ) = (m ) = m( );
4)
(
+
)
=
+
;
5)
Если заданы векторы
(xa,
ya,
za)
и
(xb,
yb,
zb)
в декартовой прямоугольной системе
координат с единичными векторами
,
то
=
6)
Геометрическим смыслом векторного
произведения векторов является площадь
параллелограмма, построенного на
векторах
и
.
17.1. Смешанное произведение векторов и его свойства.
Смешанным произведением векторов наз. векторно-скалярное произведение, являющееся числом: a*b*c=[a*b]*c=a*[b*c], где
a={ax,ay,az}
b={bx,by,bz}
c={cx,cy,cz}
Св-ва: 1. При перестановке 2х сомножителей:
a*b*c=-b*c*a
2. не меняется при перестановке циклических сомножителей:
a*b*c=c*a*b=b*c*a
3.а)(Геометрич. смысл) необходимым и достаточным условием компланарности 3х векторов явл. равенство a*b*c=0
б)если некомпланарные вектора a,b,c привести к 1 началу, то |a*b*c|=Vпараллепипеда, построенного на этих векторах
если a*b*c>0, то тройка a,b,c - правая
если a*b*c<0, то тройка a,b,c - левая
1.1.Матрицы (основные понятия). Линейные операции над матрицами, их свойства
Матрицей наз прямоуг таблица чисел, содерж m-строк и n-столбцов. Матрицы равны между собой, если равны соответств элементы этих матриц. Матрица, в которой m=n наз квадратной или n-ого порядка. Квадр матрица, у которой все элементы, кроме элементов гл диагонали, равны 0 еаз диагональной. Диаг матрица, у которой каждый элемент главной диаг =1 наз единичной. Квадратная матрица наз треуг, если все элементы, расположенные по одну сторону её гл диаг =0. Матрица, у которой все числа, стоящие на гл диаг не нулевые, а также некоторое кол ненулевых строк, наз трапециевидной. Матрица, содерж один столбец или строку, наз вектором из Rn пр-ва. Действия. Сложение – только для матриц одинакового размера. Умножение на число. Множества матриц одинакового размера обознач Mm*n. Тогда введённое на этом мн-ве операции сложения и умнож на число превращ Mm*n в линейное пр-во, векторами которого явл матрицы m*n. Умножение на вектор-столбец. Для умножения матрицы на вектор-столбец надо, чтобы число столбцов матрицы было равно числу координат вектора. Две матрицы наз эквивалентными, если одна из них получена из другой с помощью эл. Преобраз. Любую матрицу можно привести к канонической.