- •2.1.Умножение матриц. Свойстваумножения.
- •12.1.Понятие вектора. Линейные операции над векторами.
- •13.1. Базис и координаты вектора.
- •14.1. Прямоугольн система координат. Линейн операц над векторами в лин форме.
- •4.1. Миноры, алгебраические дополнения. Теорем о разложении определителя по элементам ряда Миноры и алгебраические дополнения. Теорема Лапласа
- •3.1 Определители 2-го и 3-го порядков. Понятие определителя n-го порядка.
- •5.1 Свойства Определителей
- •16.1. Векторное произведение векторов.
- •17.1. Смешанное произведение векторов и его свойства.
- •1.1.Матрицы (основные понятия). Линейные операции над матрицами, их свойства
- •6.1.Обратная матрица. Необходимое и достаточное условия существования обратной матрицы
- •10.1 Теорема Конекера─Капелли. Решение произвольных систем.
- •8.1.Невырожденные системы.Фор-ы Краме. Метод Гаусса.
- •Решение систем линейных уравнений методом Гаусса
- •9.1 Ранг матрицы. Теорема об инвариантности ранга матрицы.
- •7.1Системы линейных уравнений. Основные определения. Матричная запись
- •1.2. Урав плоскости, проходящей через данную точку перпендик-рно даному вектору. Общ урав плоскости. Урав плоскости в отрезках.
- •4.2. Взаимное расположение плоскостей.
- •5.1. Канонические и параметрические уравн прямой. Урав прямой, проходящ через две точки.
- •6.2 Сведение общего урав. Прямой в пространсве к каноническим уравнениям.
- •11.2. Взаимн распол-ние прямй и плоскоси. Угол между прямой и плоскостью
- •3.2 Нормальное уравнение плоскости. Расстояние от точки до плоскости.
- •Расстояние от точки до плоскости
- •Теорема о единственности предела
- •11. Теоремы об эквивалентных бесконечно малых. Определение
- •6.3.Бесконечно малые величины и их св-ва
- •1.3 Числовая последовательность и ее предел.
- •8. 3. 1Й, замечательный предел.
- •9.3 Второй замечательный предел
- •1 2.3. Непрерывность функции в точке. Действия над непрерыв функциями
- •13. Классификация точек разрыва.
- •5.3 Свойства бесконечно малых функций:
- •4.4 Бесконечно большие и бесконечно малые функции. Связь между ними
- •2. Теорема об ограниченности сходящеся последовательности. Теоре Вейерштрасса.
- •14.3. Односторонняя непрерывность. Свойства непрерывных на отрезке функций
- •15. Раскрытие неопределенностей других видов по правилу Лопиталя.
- •19. Выпуклость, вогнутость графика функции; достаточные условия.
- •23. Наименьшее и наибольшее значения непрерывной на отрезке функции. Нахождение наибольшего и наименьшего значений непрерывной функции на отрезке
- •11.4 Применение дифференциала в приближенных вычислениях.
- •12.4 Дифференциалы высших порядков. Дифференциал высшего порядка функции одной переменной
- •1.4 Производная. Геометрический и механический смысл.
- •3.4. Основные правила дифференцирования.
- •8.4 Логарифмическое дифференцирование.
- •10.4. Дифференциал ф-ции и его геометрический смысл. Св-ва дифференциала.
- •13.4.Теорема Ролля. Лагранжа. Коши
- •6.4.Производная ф-и задана неявно
- •16.4. Экстремумы функции. Необходимое условие экстремума (теорема Ферма).
- •21.4. Асимптоты.
- •22.4. Общая схема исследования ф-ции необходима для построения графика.
- •2.4 Теорема: Связь между непрерывной и дифференцируемой функцией.
- •9.4Производная высших порядков.
- •14.4.Раскрытие неопределенностей вида 0/0 (правило Лопиталя).
- •15.4 Раскрытие неопределенностей других видов по правилу Лопиталя.
- •17.4 Теорема: Достаточный признак возрастания функции.
- •18.4 Достаточные условия существования экстремума.
- •19.4 Выпуклость графика функции.
- •7.4 Производная ф-и задана и параметрически
- •6.4.Производная ф-и задана неявно
- •14.2. Парабола и ее свойства.
- •12.2.Эллипс и его св-ва:
- •13.2. Гипербола и ее св-ва.
- •15. Скалярное произведение векторов и его свойства.
14.4.Раскрытие неопределенностей вида 0/0 (правило Лопиталя).
Самым мощным методом является правило Лопиталя, однако и оно не во всех случаях позволяет вычислить предел. меняется.
«Замечательный
предел»
—
пример неопределённости вида 0 / 0. По
правилу
Лопиталя
15.4 Раскрытие неопределенностей других видов по правилу Лопиталя.
Пусть функции f(x) и g(x) дифференцируемы в некоторой окрестности точки a, за исключением, быть может, самой точки a, и пусть или . Тогда, если существует предел отношения производных этих функций , то существует и предел отношения самих функций f(x)/g(x) при x→а, причем
|
(1) |
Таким образом, правило Лопиталя можно сформулировать следующим образом: предел отношения двух бесконечно малых или двух бесконечно больших величин равен пределу отношения их производных.
17.4 Теорема: Достаточный признак возрастания функции.
Если f’(x)>0, (a,b), то f(x) возрастает на [a,b].
Док-во:
возьмем x1, x2 [a,b]: x1<x2 => f(x2)>f(x1)
применим т. Лангранжа f(x) на [x1,x2]
по этой теореме f(x2)-f(x1)=f’(c)(x2-x1)>0 => f(x2)>f(x1).Замечание: данные условия не являются необходимыми.
Теорема: достаточный признак убывания функции. Если f’(x)<0 на (a,b), то f(x) убывает на [a,b].
Док-во 1: подобно предыдущему.
Док-во 2: g(x)=-f(x),тогда g’(x)=-f’(x)>0
=> g(x) - возрастает => f(x) – убывает.
Несложно показать, что если функция возрастает (убывает) на [a,b], то ее произв. не отрицат.(положит.) на (a,b).
f(x) возрастает: [a,b]=>f’(x)0 (a,b).
18.4 Достаточные условия существования экстремума.
Если f’(x)>0 на интервале (x0-б,х0) и f’(x)<0 на интервале (х0,x0+б) т.е. меняет знак с плюса на минус при переходе на точку х0, т.е. х0 – точка максимума f(x), а если же меняет знак с минуса на плюс, то х0 – точка минимума.
Доказательство:
теорема: Второй достаточный признак максимума функции.
Если f(x) имеет непрерывную вторую производную в окрестности точки х0, и:
1). f’(x0)=0 2). f’’(x0)<0
то х0 точка максимума (аналогично, если f’’(x0)<0, то х0 – точка минимума)
Док-во: Возьмем окрестность, где вторая производная сохраняет знак и запишем формулу Тейлора 1-го порядка для х из данной окрестности.
19.4 Выпуклость графика функции.
О
пр.
График функции y=f(x)
называется выпуклым вниз (вверх) если
он расположен выше (ниже) любой касательной
проведенной к графику функции на данном
интервале.
Теорема: Достаточный признак выпуклости графика функции вниз.
Если функция f(x) дважды дефференц. на нтервале (a,b) и ее вторая производн. f’’(x)>0 на интервале (a,b), то график функции y=f(x) выпуклый вниз на интервале (a,b).
Уравнение
касательной:
Возьмем X=x.Из первого вычтем второе
Поэтому y>Y следовательно график функции расположен выше касательной
Аналогично, если f’’(x)<0 на (a,b) то график функции y=f(x) - выпуклый вверх, на данном интервале.
