
- •Вопрос 80: Вибрация. Инженерно-технические средства защиты от вибрации. Методы определения вибрационного воздействия на операторов машин.
- •Вопрос 81: Вибродемпфирующие конструкционные материалы и их применение в виброизоляторах.
- •Вопрос 85: Основные виды утилизации тпбо.
- •Вопрос 84: Управление твёрдыми бытовыми и промышленными отходами (тпбо). Термическое обезвреживание тпбо.
- •Вопрос 83: Утилизация твердых отходов. Анализ бытовых и промышленных отходов (тпбо) с точки зрения их вредности и возможности вторичного использования в качестве сырья и энергии.
- •Вопрос 86:
- •Вопрос 87:
- •Вопрос 88:
- •Вопрос 89:
Вопрос 81: Вибродемпфирующие конструкционные материалы и их применение в виброизоляторах.
При проведении исследовательских и технологических работ широко применяются автоматизированные устройства, вакуумные механические насосы, вибросмесители и другое оборудование, работа которого реализуется в динамическом режиме и сопровождается вибрацией.
Локальная или общая вибрация, действующая на человека, отрицательно влияет на его работоспособность. Поэтому при длительной работе человека с вибросистемами необходимы соответствующие меры его защиты от вибрации.
Для защиты от вибрации широкое применение
находят виброизоляторы - устройства из
конструкционных материалов (или
высокомодульных резин): пружинные элементы,
расположенные между источником вибрации и
защищаемым от вибрации объектом.
Возможно также применение пластинчатых
виброизоляторов, которые используются в качестве
демпфирующих прокладок между фундаментом и
вибросистемой.
В целях обеспечения надежной работы виброизоляторов для их изготовления применяют высокопрочные пружинные стали, а также другие конструкционные материалы, характеризующиеся определенной демпфирующей способностью. Следует заметить, что конструкционные материалы для изготовления виброизоляторов должны сохранять в процессе их эксплуатации требуемый уровень физико-механических характеристик, исключающий возможность их изменения в результате деформационного старения, повышения склонности к хрупкому разрушению, снижения модуля упругости и предела упругой деформации и выносливости (усталости).
В наибольшей степени удовлетворяют рассмотренным требованиям пружинные сплавы и стали. К пружинным общего назначения относят легированные стали перлитного класса. Химический состав некоторых пружинных сталей общего назначения приведен в приложении.
Эффективность применения углеродистых и легированных сталей для пружинных элементов вибросистем обусловлена повышенным содержанием в них углерода, что обеспечивает требуемый уровень их прочности в результате выделения при термообработке дисперсной фазы, блокирующей дислокации.
Наиболее широкое применение при изготовлении пружинных виброизоляторов получили кремнистые пружинные стали. Их эффективное применение объясняется тем, что наличие кремния
(1-3 %) способствует сопротивлению сталей значительным пластическим деформациям. Это особенно важно для безопасной работы пружинных элементов в условиях перегрузки виброизоляторов .
Пружины из кремнистых сталей успешно эксплуатируются в условиях динамической нагрузки, поскольку такие стали характеризуются сочетанием высокой прочности и повышенной пластичности, а также вязкости. В качестве примера можно привести химический состав и свойства кремнистых пружинных сталей, применяемых для изготовления пружин, эксплуатируемых в условиях вибрационных нагрузок.
Содержание кремния в таких сталях 1,5-1,8 % при 0,48-0,55 % углерода, 0,50-0,80 % марганца. Прочность при растяжении достигает 980-1470 МН/м2.
Для изготовления виброизоляторов могут быть рекомендованы также кремниемарганцевые, кремниехромистые, кремниеникелевые и кремниевольфрамовые пружинные стали. Применительно к условиям работы виброизоляторов в динамическом режиме целесообразно их изготовление из стали 55СГ2, содержащей 0,54 % С, 1,23 % Si, 1,66 % Мп.
Указанная марка стали после закалки и отпуска при 310 ͦ С имеет σ=1100 МН/м2, = 803 МН/м2, а после отпуска максимальный уровень предела упругости, пластичности, вязкости этой стали не хуже, чем у кремнистых сталей.