
- •Биофизика (бф), как самостоятельная научная дисциплина. Предмет и задачи.
- •Биологические и физические процессы и закономерности в живых системах. Редукционизм и антиредукцианизм. Принцип качественной несводимости.
- •Основные направления развития современной биофизики. Уровни биофизических исследований.
- •Классификация тд систем; особенности живых организмов, как тд систем.
- •6. Характеристика тд функций, применяемых для анализа биолог процессов.
- •7. Внутренняя энергия, теплота и работа, как тд функции.
- •Первый закон тд в биологии; доказательства его применимости к живым системам. Своеобразие проявления первого закона тд в биосистемах.
- •Характеристика энтальпии системы как функция состояния. Тепловой эффект процесса.
- •Закон Гесса, его применимость к биопроцессам. Следствие закона Гесса, его практическое значение.
- •Формулировка второго закона тд. Своеобразие его проявления в биосистемах.
- •Энтропия как функция состояния системы. Связь энтропии с тд вероятностью состояния системы.
- •Уравнение второго закона тд. Понятие свободной и связанной энергии.
- •Доказательства применимости второго закона тд к биосистемам.
- •Теория Онзагера. Гетерогенность энтропии в биосистемах. Уравнение второго закона тд для открытых систем.
- •Теорема Пригожина и направленность эволюции биосистем. Энтропия и биологический прогресс.
- •Организм и клетка как химическая машина. Химический потенциал живой системы.
- •Критерии спонтанности, самопроизвольности протекания процессов в тд системах.
- •Применение тд в биологии: методы расчёта стандартной и реальной свободной энергии биохимических процессов. Свободная энергия Гиббса и Гельмгольца.
- •Потенциал переноса атомных группировок в различных трансферазных реакциях.
- •Понятие макроэргической связи. Характеристика атф как универсального аккумулятора энергии в биосистемах.
- •Причины высоких значений потенциала переноса при гидролизе ди- и полифосфатов. Разнообразие макроэргических соединений в биосистемах.
- •Типы энергетического обмена в биосистемах
- •Типы аккумуляции и пути расходования энергии в биосистемах. Тд сопряжение экзэргонической и эндэргонической стадии биопроцессов; примеры.
- •Тд характеристика анаэробного распада глюкозы. Расчёт кпд.
- •Тд характеристика окисления пировиноградной кислоты в цикле Кребса. Расчёт кпд.
- •Этапы уницикации энергетических субстратов в процессах катаболизма.
- •Современное представление о строении и переносе электронов в дыхательной цепи митохондрий.
- •Современные представления о механизме сопряжения окисления и фосфорилирования в биосистемах.
- •Разнообразие механизмов образование атф и их вклад в энергетику клетки.
- •Различные типы электрон-транспортных путей в живых организмах. Их роль в биоэнергетике клетки.
- •Биофизика фотосинтеза: физическая и физико-химическая стадии, квантовый выход. Расчёт кпд.
- •36. Элементарные кинетические уравнения. Скорость реакции. Константа равновесия обратимой реакции.
- •37. Факторы, определяющие скорость реакций биологических процессов.
- •38. Зависимость скорости реакции от концентраций реагирующих веществ. Молекулярность реакций. Порядок реакций.
- •39. Различия скоростей превращения вещества в реакциях различного порядка.
- •40 Особенности кинетики биологических процессов. Кинет последовательно- и параллельно-протекающих реакций в многостадийном процессе.
- •41.Принцип обратной связи и лимитирующего звена (определяющей реакции) и их роль в регуляции скоростей протекания биологических процессов.
- •42 Зависимость скорости процесса от температуры. Анализ ур-ия Аррениуса.
- •43.Энергия активации реакции (процесса). Экспериментальной определение величины энергии активации.(см №42 тоже)
- •44 Особенности кинетики ферментативных реакций. Понятие об активности ферментов. Единицы измерения активности и количества ферментов.
- •45/ Основные положения теории ферментативной кинетики и общей теории механизма действия ферментов.
- •46/ Вывод и анализ уравнения Михаэлиса-Ментен для односубстратной ферментативной реакции.
- •47 Графическии анализ результатов кинетического исследования ферментативной реакции (v0 число "оборотов", Vmах,Кm).
- •48.Физический смысл основных кинетических характеристик ферментативной реакции (Vmax, Кm).
- •49/ Использование уравнения Лайнуивера-Берка для определения кинетических характеристик ферментативной реакции.
- •50/Кинетика ингибирования ферментативных реакций. Обратимое и необратимое ингибирование. Типы обратимого ингибирования.
- •51. Графический анализ конкурентного ингибирования по уравнению Лайнуивера-Берка
- •52. Графический анализ неконкурентного ингибирования по уравнению Лайнуивера-Берка
- •54 Предмет, задачи молекул.Биофизики. Методы исследования
- •55 Биополимеры как основа организации биоструктур, особенности строения, функции
- •56Типы взаимодействия в биополимерах
- •57Факторы стабильности пространственной структуры биологических макромолекул
- •58 Биофизика белков: строение полипептидной цепи, разнообразие типов пространственной структуры молекул
- •59 Физические свойства белков , денатурация, ренатурация. Биороль
- •60 Биофизика нуклеиновых кислот (нк):строение полипептидной цепи, особенности пространственной сьруктуры
- •61 Физические модели нуклеиновых кислот(нк), методы изучения днк и рнк
- •62 Физич. Свойства нк. Денатурация, ренатурация: механизм, качеств. И количеств характеристика, биологич. Роль. Метод молеклярной гибридизации.
- •63 Осмотическое давление биол. Жидкостей, его измерение; влияние поверхностной активности веществ на величину поверхностного натяжения, биологическая роль.
- •64. Поверхностное натяжение воды и биологических жидкостей, его измерение; влияние поверхностно активных веществ на величину поверхностного натяжения; биологическая роль.
- •65. Развитие представлений о строении биомембран; типы моделей мембран, их научное значение.
- •66.Биофизическая характеристика молекулярных компонентов мембран: белков, липидов, углеводов и их комплексов.
- •67.Вода как составной компонент биомембран: структура, свойства, биологическая роль.
- •68.Типы межмолек улярных взаимодействий в мембранах, их природа и роль в стабилизации мембранных структур.
- •69.Физические свойства биомембран. Подвижность компонентов мембраны (вращательное движение, латеральная и вертикальная диффузия).
- •70. Фазовые переходы в мембранах; факторы, инициирующие фазовые переходы мембран. Жидкие кристаллы в структуре мембран, их свойства.
- •71. Биофизическая характеристика мембранных липидов: строение, свойства, классификация
- •72.Искусственные мембраны, их строение, классификация, теоретическое и практическое значение. Отличие от природных мембран.
- •73. Монослой на границе раздела фаз. Липосомы и протеолипосомы. Бислойные липидные мембраны.
- •74. Проблема проницаемости и транспорта веществ через биомембраны. Методы исследования проницаемости.
- •75. Классификация и краткая характеристика типов транспорта веществ через биомембраны.
- •76. Диффузия как тип транспорта веществ через биомембраны; скорость и движущие силы диффузии. Закон Фика.
- •77. Проницаемость клеток для воды, электролитов и неэлектролитов. Физиологическая роль и практическое значение диффузии.
- •78. Облегченная диффузия и транслокация радикалов как типы транспорта веществ через биомембраны; движущие силы, механизмы, биологическая роль.
- •79.Активный транспорт молекул и ионов через биомембраны, его характеристика, свойства и функции.
- •80. Сходcтва и отличия активного транспорта и облегченной диффузии веществ через биомембраны. Доказательства наличия активного транспора в условиях in vitro.
- •81. Транспортные атф-азы, их классификация и роль в активном транспорте ионов. Представление о бионасосах.
- •82. Транспорт ионов кальция через биомембраны, его механизмы, регуляция и биологическая роль
- •83. Биоэлектрические явления: общая характеристика, классификация
- •84. Механизм возникновения электродных и ионных биопотенциалов, их измерение. Формула Нернста.
- •85. Мембранный потенциал и факторы, определяющие его величину.Передача нервного импульса по миелиновым и немиелиновым нервным волокнам.
- •86. Электрокинетический потенциал: возникновение, измерение и факторы, определяющие его величину. Примеры электрокинетических явлений, их характеристика и научно-практическое значение.
- •87. Общая характеристика механохимических процессов. Основные типы сократительных и подвижных систем.
- •88.Биофизическая характеристика мышечных и немышечных сократительных белков.
- •89.Основные характеристики поперечно-полосатой мышцы как механического преобразователя энергии; структура саркомеров, ее изменение при мышечном сокращении.
- •90.Молекулярные механизмы мышечного сокращения, его регуляция.
- •Биофизика (бф), как самостоятельная научная дисциплина. Предмет и задачи.
- •Биологические и физические процессы и закономерности в живых системах. Редукционизм и антиредукцианизм. Принцип качественной несводимости.
72.Искусственные мембраны, их строение, классификация, теоретическое и практическое значение. Отличие от природных мембран.
Искусственная мембрана обычно представляет собой жесткую селективно-проницаемую перегородку, разделяющую массообменный аппарат на две рабочие зоны, в которых поддерживаются различные давления и составы разделяемой смеси.
Мембраны могут быть выполнены в виде плоских листов, труб, капилляров и полых волокон. Мембраны выстраиваются в мембранные системы. Наиболее распространенные искусственные мембраны — полимерные мембраны. При определённых условиях, преимущественно могут быть использованы керамические мембраны.
Некоторые мембраны работают в широком диапазоне мембранных операций, таких, как микрофильтрация, ультрафильтрация, обратный осмос, первапорация, сепарация газа, диализ или хроматография. Способ применения зависит от типа функциональности включеной в мембрану, которые могут быть основаны на изоляции по размеру, химическом родстве или электростатике.
73. Монослой на границе раздела фаз. Липосомы и протеолипосомы. Бислойные липидные мембраны.
Для изучения многих свойств мембран, таких, как проницаемость для различных веществ (в том числе и лекарств), электропроводность, механизм формирования трансмембранных потенциалов и других, удобно использовать не природные, а искусственные мембраны. Последних существует несколько видов.
Известно, что липиды, нанесенные на поверхность воды, не смешиваются с ней, а образуют пленку. При нанесении некоторого количества липидов на поверхность воды можно получить мономолекулярный слой. Благодаря свойству амфифильности, на границе раздела вода — воздух гидрофильные «головки» липидов обращены к воде, а гидрофобные «хвосты» — в воздух.
Такие мономолекулярные слои удобно использовать для изучения механических свойств мембран, подвижности и упаковки мембранных молекул, всевозможных процессов, протекающих на границе раздела фаз, а также действия лекарств. Монослои готовят не только из искусственных липидов, но и из липидов природных мембран как здоровых, так и патологических клеток, что позволяет проводить ряд биологических исследований. Известно, что некоторые физические (например изменение температуры) и химические (например действие некоторых анестетиков) воздействия способны изменить величину площади, занимаемой одной молекулой фосфолипида. Монослои позволяют относительно несложными методами измерить величину этого изменения.
На способности липидов образовывать мономолекулярные слои на границе раздела гидрофобной и гидрофильной фаз основано действие моющих средств. Мыло состоит из липидных молекул, которые в воде окружают засаленные участки отмываемой поверхности. Гидрофобные фрагменты загрязнений оказываются внутри капсулы, окруженной монослоем из молекул мыла. Снаружи такая капсула имеет гидрофильные группы и поэтому легко смывается водой.
Монослои имеют существенный недостаток: они состоят из одного слоя липидов, в то время как природные мембраны образованы двумя слоями. Этого недостатка лишены такие искусственные мембранные структуры, как липосомы и плоские бислойные липидные мембраны.
Липосомы образуются при добавлении фосфолипидов в полярный растворитель. При этом происходит самопроизвольное формирование бислойных замкнутых структур, так как именно такая структура отвечает состоянию с минимальной энергией. Как правило, спонтанно образуются многослойные (мультиламеллярные) липосомы, в которых каждый липидный бислой отделен от другого слоем воды. Толщина билипидных слоев составляет 6,5—7,5 нм, в зависимости от природы липидов. Монослойные (моноламеллярные) липосомы можно получить при воздействии ультразвуком на эмульсию с многослойными липосомами. Липосомы, полученные этим методом, не очень удобны для исследований, так как слишком малы (диаметр 20—40 нм). В настоящее время существуют методы для получения липосом большего размера (диаметром до 400 нм и более). Липосомы могут образовывать и природные мембраны при действии на них разрушающих факторов (ультразвук, механические воздействия).
В состав мембраны липосом, кроме липидов, могут быть включены белки, а также небольшие фрагменты природных мебран. Липосомы, содержащие белки, называются протеолипосомами. Они широко применяются для исследования мембран. Липосомы позволяют, изменяя липидный и белковый состав, смоделировать цитоплазматические мембраны митохондрий, мембраны эндоплазматического ретикулума и других органелл клетки. С помощью липосом можно определить проницаемость мембраны для того или иного лекарственного препарата. Для этого липосомы получают в растворе, содержащем изучаемый препарат. Часть препарата оказывается внутри липосом, после этого оставшуюся часть выводят из окружающего раствора и по количеству препарата, просачиваемого из липосом в раствор за определенное время, определяют скорость его выхода.
Липосомы можно использовать не только в научных исследованиях, но и на практике. При введении внутрь липосомы лекарственного препарата облегчается его доставка и проникновение в ткани или органы. Состав липосомальных липидов можно подобрать таким образом, что такая оболочка будет совершенно не токсична. В косметологии, например, в состав кремов включают липосомы, содержащие биологически активные вещества. Рассматривается возможность введения инсулина с помощью липосом. Билипидная оболочка защитит белковую молекулу инсулина от действия ферментов пищеварительного тракта. Это позволит вводить инсулин перорально, а не с помощью инъекций.
Иногда требуется доставить препарат именно в данный орган или определенный участок органа. Известно, что каждый класс клеток организма имеет на своей мембране среди множества белков отличительные белки (антигены), свойственные только этим клеткам. К каждому антигену существует комплементарная молекула (антитело), способная взаимодействовать только со «своим» антигеном. Если такое антитело включить в билипидную оболочку липосомы, то, случайно оказавшись (с током крови) возле нужного антигена, к клетке прикрепится антитело, а с ним — и липосома с лекарством. Однако подобные методы терапии еще только разрабатываются.
Плоские бислойные липидные мембраны (БЛМ) можно получить, если на небольшое отверстие диаметром около 1 мм в тонкой фторопластовой пластине, помещенной в воду, нанести каплю углеводородного (например гептанового) раствора липида. Растворитель диффундирует в раствор, образуется толстая липидная пленка, которая самопроизвольно утончается в течение 5— 20 мин до тех пор, пока не получится билипидная мембрана толщиной 5—7 нм. Утончению пленки способствуют силы поверхностного натяжения и силы Ван-дер-Ваальса, притягивающие слои воды по обе стороны пленки. Лишние липидные молекулы скапливаются на ободке отверстия в пластиковом стаканчике, образуя торус. БЛМ - хороший объект для изучения электрических, транспортных и других свойств мембран. Например, БЛМ помогли изучить действие антибиотиков валиномицина и грамицидина, а также ряда других лекарственных препаратов, изменяющих проницаемость мембраны.