Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_na_ekzamenatsionnye_voprosy по архитекту....doc
Скачиваний:
19
Добавлен:
14.04.2019
Размер:
1.38 Mб
Скачать

8.Организация энергопотребления в вычислительных системах

Правильная организация энергоснабжения – основа её бесперебойной работы. Импульсная система питания характеризуется стабильностью работы.

Главным компонентом вычислительной системы, отвечающим за организацию энергоснабжения всех элементов, является блок питания. От правильного выбора блока питания зависит правильность работы всех компонентов системы. Блок же питания преобразует переменный ток (АС), поступающий из сети питания, в постоянный ток (DC) более низкого напряжения. Постоянный ток необходим всем компонентам компьютера. Как правило, в компьютерах используются блоки питания мощностью от 200 до 500 Вт. Однако есть компьютеры, для которых необходимы блоки питания от 500 до 800 Вт. При сборке компьютера нужно выбирать блок питания, мощности которого будет достаточно для электропитания всех компонентов. Данные о мощности компонентов можно получить из документации производителя. Принимая решение о выборе блока питания, убедитесь в том, что его мощности достаточно для текущих компонентов системы.

Вопрос выбора блока питания для конкретной конфигурации вечен — особенно когда конфигурация предполагается мощной, и становится понятно, что типовым 300- или 400-ваттником, поставляемым вместе с корпусом, можно и не обойтись. При этом и купить, не думая, что-нибудь ватт так на тысячу, не вариант — мало кому хочется впустую потратить несколько сотен тысяч рублей. К сожалению, внятных данных по потребной для тех или иных компонентов мощности зачастую просто нет: производители видеокарт и процессоров перестраховываются, указывая в рекомендациях заведомо завышенные значения, всевозможные калькуляторы оперируют непонятно как полученными числами, а процесс измерения реального энергопотребления, хоть и освоен уже большинством околокомпьютерных изданий, зачастую оставляет желать лучшего.

Как правило, открыв раздел «Энергопотребление» в какой-либо статье, вы увидите результаты замера энергопотребления «от розетки» — то есть, какую мощность от сети 220 В (или 110 В, если дело происходит не в Европе) потребляет блок питания, в качестве нагрузки на который выступает тестируемый компьютер. Провести такие измерения очень просто: бытовые ваттметры, представляющие собой небольшой приборчик с одной розеткой, стоят дёшево.

Точность измерения у подобных приборчиков сравнительно неплоха, особенно если речь идёт о мощностях порядка сотен ватт, не пасуют они и перед нелинейной нагрузкой (а любой компьютерный блок питания является таковой, особенно если в нём нет активного PFC): внутри ваттметра стоит специализированный микроконтроллер, честно проводящий интегрирование тока и напряжения по времени, что позволяет рассчитывать активную мощность, потребляемую нагрузкой.

Дело в том, что замер потребления от розетки, конечно, прост, но вот результат даёт очень для практического применения неудобный:

  • Не учитывается КПД блока питания: скажем, блок с КПД 80 % при нагрузке 500 Вт будет потреблять от розетки 500/0,8 = 625 Вт. Соответственно, если вы получаете в измерениях «от розетки» результат 625 Вт, не надо бежать за 650-Вт блоком питания — на самом деле 550-ваттный тоже справится. Конечно, эту поправку можно держать в уме, а то и, предварительно протестировав блок и измерив его КПД в зависимости от нагрузки, пересчитывать полученные ватты, но это неудобно, да и на точность результата влияет не лучшим образом.

  • Полученный в таких измерениях результат — среднее, а не максимальное значение. Современные процессоры и видеокарты могут очень быстро менять своё энергопотребление, однако отдельные короткие выбросы будут сглажены за счёт ёмкости конденсаторов блока питания, поэтому, измеряя потребляемый ток между блоком и розеткой, вы этих выбросов не увидите.

  • Измеряя потребление блока питания от розетки, мы не получаем ровным счётом никакой информации о распределении нагрузки по его шинам — сколько приходится на 5 В, сколько на 12 В, сколько на 3,3 В... А эта информация и важна, и интересна.

  • Наконец (и это самый главный пункт), при измерениях «от розетки» мы точно так же не можем узнать, сколько потребляет видеокарта, а сколько — процессор, мы видим только общее потребление системы. Тоже, конечно, информация полезная, но, тестируя процессоры или видеокарты, хотелось бы получать конкретную информацию именно о них.

У блоков питания имеется стандартный цветовой код электропитания, который отвечает за распределение напряжения на компоненты вычислительной системы. Рассмотрим цветовой код электропитания:

Напряжения

Цвет провода

Применение

+12 В

Жёлтый

Приводы дисководов, вентиляторы, устройства охлаждения и гнёзда системных шин

-12 В

Синий

Некоторые типы цепей с последовательным портом и программируемым постоянным запоминающим

+3,3 В

Оранжевый

Новейшие ЦП, некоторые типы системной памяти и видеокарты AGP

+5 В

Красный

Материнская плата форм фактор и более старые ЦП, а также компоненты материнской платы

-5 В

Белый

Платы ISA с шинными схемами и старые ППЗУ

0 В

Чёрный

Земля – используется для комплектации цепей с другими напряжениями

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]