- •1.Химия как наука о в-вах и их превращениях. Место химии в системе наук. Материя. Химическая форма энергии. Смеси и вещества. Свойства материалов. Анализ и синтез.
- •3. Равновесия. Стабильное и метастабильное равновесие. Виды равновесий. Равновесия статическое и динамическое. Физическое равновесие. Фазовые равновесия. Фазовые диаграммы. Диаграмма воды.
- •2. Ковалентная связь. Основные положения теории отталкивания валентных электронных пар (овэп), теории валентных связей (твс). Гибридизация. Полярная и неполярная ковалентная связь.
- •3. Фазовые диаграммы двухкомпонентных систем. Фракционная перегонка.
- •1. Гальванические элементы. Электродвижущая сила (эдс) гэ. Электрохимический ряд напряжений металлов.
- •3. Химическое равновесие. Константа равновесия. Химическое равновесие и катализ. Факторы, влияющие на смещение химического равновесия. Принцип Ле-Шателье.
- •1. Развитие представлений о строении атома. Составные части атома – ядро, (протоны, нейтроны), элеткроны их заряд и масса. Понятие о масс-спектрометрии.
- •2. Металлическая связь. Кластеры.
- •3. Типы растворов. Способы выражения концентрации. Идеальные и неидеальные растворы. Коллигативные св-ва растворов. Законы Генри, Рауля, Вант-Гоффа.
- •1.Квантовомеханическое объяснение строения атома. Характеристика энергетического состояния электрона квантовыми числами. Атомные орбитали. Принцип Паули. Правило Хунда.
- •2.Степень ионности и ковалентности связи. Природа связи в кс.
- •2. Эффективные заряды атомов в молекулах. Электрический момент. Постоянные и наведенные диполи. Дисперсионное, ориентационное и индукционное взаимодейтсвие.
- •3. Кислоты и основания. Кислотно-основные свойтсва по Аррениусу, Бренстеду-Лоури и Льюису.
- •1.Периодически и непериодически изменяющиеся свойтсва элементов по их расположению в таблице Менделеева. Энергия ионизации атомов, сродство к электрону. Понятие об элеткроотрицательности.
- •2. Водородная связь. Вандерваальсово взаимодействие. Размеры атомов и ионов.
- •3. Соли, основные свойтсва. Гидролиз солей. Примеры.
- •1.Химия как наука о в-вах и их превращениях. Место химии в системе наук. Материя. Химическая форма энергии. Смеси и вещества. Свойства материалов. Анализ и синтез.
- •2. Изолированные и неизолированные системы. Функции состояния, уровнения состояния. Работа теплота и энергия. Температура. Внутренняя энергия.
- •3. Амфотерность. Водородный показатель. Понятие об индикаторах. Кислотно-основное титрование. Буферные растворы.
- •1.Теплота и температура. Основные понятия и фундаментальные законы химии.
- •2. Энтальпия. Первый закон термодинамики. Правила термохимии. Закон Гесса.
- •1.Развитие представлений о строении атома. Составные части атома – ядро (протоны, нейтроны), электроны, их заряд и масса.
- •2.Энтропия. 2 закон термодинамики. 3 закон термодинамики.
- •2.Энергия Гиббса. Направление хим реакций.
- •3. Электродные потенциалы. Электродные потенциалы металлов и факторы, влияющие на их величину. Понятие о стандартных потенциалах. Стандартный (нормальный) водородный потенциал.
- •1.Квантовомеханическое объяснение строения атома. Характеристика энергетического состояния электрона квантовыми числами. Атомные орбитали. Принцип Паули. Правило Хунда.
- •3. Произведение растворимости Условия образования и ратсворения осадков. Ионный обмен и ионообменники.
- •1.Периодически и непериодически изменяющиеся свойтсва элементов по их расположению в таблице Менделеева. Энергия ионизации атомов, сродство к электрону. Понятие об элеткроотрицательности.
- •2.Катализ, катализаторы. Основные типы катализаторов. Принцип микроскопической обратимости. Ингибиторы.
- •3. Радиоактивность. Изотопы и изобары. Виды излучений. Ядерные превращения. Ряды радиоактивных превращений. Ядерное деление и ядерный синтез.
- •2. Энтальпия. Первый закон термодинамики. Правила термохимии. Закон Гесса.
- •3. Кислоты и основания. Кислотно-основные свойтсва по Аррениусу, Бренстеду-Лоури и Льюису.
- •2.Энтропия. 2 закон термодинамики. 3 закон термодинамики.
- •3. Химическое равновесие. Константа равновесия. Химическое равновесие и катализ. Факторы, влияющие на смещение химического равновесия. Принцип Ле-Шателье.
- •2. Изолированные неизолированные сис-мы. Функции состояния, уравнения состояния. Работа, теплота, энергия. Температура. Внутренняя энергия.
- •3. Сольволиз и гидролиз. Гидролиз солей. Степень и константа гидролиза.
- •1.Квантовомеханическое объяснение строения атома. Характеристика энергетического состояния ē квантовыми числами. Атомные орбитали. Принцип наименьшей энергии. Принцип Паули. Правило Хунда.
- •2. Энергия Гиббса и направление хим. Реа-и.
- •1. Ковалентная связь. Основные положения теории отталкивания валентных электронных пар (овэп), теории валентных связей (твс). Гибридизация. Полярная и неполярная ковалентная связь.
- •2. Физическое равновесие. Фазовые равновесия. Понятие о фазовых диагрммах. Фазовая диаграмма воды.
- •3. Гальванические элементы. Электродвижущая сила (эдс) гэ. Электрохимический ряд напряжений металлов.
- •1. Полярная и неполярная ковалентная связь. Степень ионности и ковалентности связи. Природа связей в комплексных соединениях.
- •2. Равновесия. Стабильное и метастабильное равновесие. Виды равновесий. Равновесия статическое и динамическое. Физическое равновесие. Фазовые равновесия. Фазовые диаграммы. Диаграмма воды.
- •3. Практическое использования гальванических элементов. Аккумуляторы, топливные элементы.
- •1.Периодически и непериодически изменяющиеся свойтсва элементов по их расположению в таблице Менделеева. Энергия ионизации атомов, сродство к электрону. Понятие об элеткроотрицательности.
- •2.Катализ, катализаторы. Основные типы катализаторов. Принцип микроскопической обратимости. Ингибиторы.
- •3. Кислоты и основания. Кислотно-основные свойтсва по Аррениусу, Бренстеду-Лоури и Льюису.
- •1. Химия как наука о в-вах и их превращениях. Место химии в системе наук. Материя. Химическая форма энергии. Смеси и вещества. Свойства материалов. Анализ и синтез.
- •2. Водородная связь. Вандерваальсово взаимодействие. Размеры атомов и ионов.
- •3. 3. Химическое равновесие. Константа равновесия. Химическое равновесие и катализ. Факторы, влияющие на смещение химического равновесия. Принцип Ле-Шателье.
- •2. Энтальпия. Первый закон термодинамики. Правила термохимии. Закон Гесса.
- •3. Амфотерность. Водородный показатель. Понятие об индикаторах. Кислотно-основное титрование. Буферные растворы.
- •1. Ковалентая связь. Основные положения метода молекулярных орбиталей.
- •3. Кислоты и основания. Кислотно-основные свойтсва по Аррениусу, Бренстеду-Лоури и Льюису.
- •1. Основные положения электронной теории валентности Косселя-Льюиса. Ионный и ковалентный характер связи. Формулы Льюиса.
- •2. Явление катализа. Гетерогенный катализ. Основные стадии гетерогенного катализа.
- •3. Сольволиз и гидролиз. Гидролиз солей. Степень и константа гидролиза.
- •1. Квантовомеханическое объяснение строения атома. Характеристика энергетического состояния электрона квантовыми числами. Атомные орбитали. Принцип Паули. Правило Хунда.
- •2. Факторы, влияющие на скорость химических реакций. Реакционный механизм. Переходное состояние промежуточная частица, промежуточное соединение.
- •3 Равновесия. Обратимые и необратимые реакции. Константа равновесия. Условия смещения хим. Равновесия. Примеры. Хим. Равновесие и катализ.
- •1. Размеры атомов и ионов. Ионный, ковалентный, металлический и вандерваальсов радиусы.
- •2. Функции состояния системы. Энтальпия. Правила термохимии. Закон Гесса.
- •3. Идеальные и неидеальные растворы. Коллигативные св-ва растворов.
1. Гальванические элементы. Электродвижущая сила (эдс) гэ. Электрохимический ряд напряжений металлов.
ГЭ – это ус-ва, к-рые состоят из металлических элеткродов, опущенных в р-ры элеткролитов и соединных в замкнутую электрическую цепь. ЭДС – разность потенциалов на катоде и аноде. Это необходимое условие протекание электрохимической реакции.(Пару Ме + р-р его соли называют электродом. Разность потенциалов на гранцие Ме – р-р называют электродным потенциалом)
Электрохимическая р-я – хим превращение которое происходит под действием эл тока в электр. ячейке (электролизере) при электролизе.
Электрохимическая реакция, протекающая в гэ является ОВР, принципиальное отличие:
1) процессы окисления и восст. пространственно разделены
2)происходит в двойном электрическом слое на электродах связанных металлическим проводником.
Электрод, на котором происх окисл - анод, в гэ А(-), в элеткролизере А(+), электрода на котором восстановление – катод, в гэ К(+) , в электролизере К(-)
3) при протекании хим реакции поддерживается эдс.
!!! Потенциал анода меньше потенциала катода
ТИПЫ ГЭ:
1.Хим гэ. полуэлементы состоят из металиических электродов, опущненных в р-ры их собственных солей. (гэ Даниэля-Якоби, (-) Zn | ZnSO4 || CuSO4 | Cu (+) )
2. Концентрационные гэ состоят из двух электродов из одинаковых Ме, но опущенных в р-ры солей разной концентрации. ( (-)Ag | Ag+c1 || c2Ag+ | Ag (+) )
Электрохимический ряд напряжений металлов получен путем сравнения потенциала Ме с потенциалом Н2. Потенциал металла, измеренный при стандартных условиях относительно стандартного водородного электрода сравнения наз. стандартным электродным потенциалом.
Стандартный водородный электрод – электрод сравнения. Схема гальв эл-та с помощью которого были получены потенциалы Ме: (-) Zn | ZnSO4 || 1M H2SO4 | H2, Pt (+)
В ряду напряжения металлов <– усиление активности, уменьшение потенциала. 1) Чем левее Ме в ряду напряжений, тем он активнее (легче окисляется и труднее восст); 2) от Mg до H - Ме средней активности, вытеснят водород из перегретого пара, а Mg и Al из гор воды; 3) после водорода малоакт Ме, которые не вытесняют водород из воды и даже из кислот при высоких t. 4) каждый Ме (начиная с Mg) вытесняет все последующие из р-ров солей (щ и щ-з Ме не вытесняют т к реагируют сначала с водой из р-ра) 5) с кислотами-окислителями реаегируют все Ме (кроме золота и платины), но водород при этом не выделяется.
Обратимый (равновесный) электродный потенциал устанавливается в том случае, когда Ме в равновесси с собственными ионами. Обратимый процесс можно провести в обратном направлении если приложить эдс больше эдс гэ.
Необратимый (неравновесный) потенциал – который возникает в гэ сост из разных эл-тов. В отличие от обратимого хим реакция протекает и в неработающем эл-те.
Виды обратимых электродов: 1) электроды первого рода – Ме электроды, опущенные в р-ры собств солей и водородные электроды. 2) второго рода – Ме покрытые труднораств соед (солью, оксидом, гидроксидом) и опущенные в р-р эл-та, имеющий общий ион с труднораств соед (хлорсеребряный электрод Ag ,AgCl | KCl ; каломельный электрод Hg, H2Cl2 | KCl (каломель H2Cl2 ) )
Ионселективные электроды – электроды, потенциал которых зависит от одного иона в р-ре.
2. Ионная связь. Ненаправленность и ненасыщенность ионной связи. Степень окисления атомов в молекуле. Поляризуемость ионов и их взаимное поляризующее действие. Влияние степени поляризации ионов на свойства веществ.
Наиболее типичные соеднинения с ионной связью - это тв неорганические соли (в т ч и комплексные), существующие в виде ионных кристаллов. Идеальной «стопроцентной» ионной связи как правило не существует.
Поляризация ионов. Ионная связь возникает между атомами элементов с сильно различающейся электроотрицательностью, которые в результате электронных переходов превращаются в противоположнозаряженные ионы. Электростатическое воздействие на частицу вызывает смещение в ней электрических зарядов, называемой поляризацией. (влияние ионов друг на друга, которое приводит к деформации электронной оболочки иона) Наибольшее смещение испытывают электроны внешнего слоя. Под действием одних и того электрического поля разлиные ионы деформируются в разной степени. Иначе говоря поляризуемость различных ионов неодинакова: чем слабее связаны внешние электроны с ядром. Тем легче поляризуется ион, тем сильнее он деформируется в электрическом поле. У ионов одинакового заряда, обладающих аналогичным строением внешнего электронного слоя, поляризуемость возрастает с увеличением размера иона, т к внешние электроны удаляются все дальше от ядра. Превращение атома в катион всегда приводит к уменьшению его размеров. Кроме того избыточный положительный заряд катиона затрудняет деформацию его внешних электронных облаков. Анионы всегда имеют большие размеры, чем нейтральные атомы, а избыточный отрицательный заряд приводит здесь к отталкиванию электронов и, следовательно, ослаблению связи их с ядром => поляризуемость анионов значительно выше поляризуемости катионов. Поляризующая способность ионов т.е. их способность оказывать деформирующее воздействие на другие ионы, также зависит от заряда и размера иона. Чем больше заряд иона, тем сильнее создаваемой им электрическое поле=> больше поляризующая способность. Поляризующая способность ионов одинакового заряда и аналогичного электронного строения падает с увеличением ионного радиуса. Анионы обладают меньшей поляризующей способностью чем катионы.
Таким образом анионы (в сравнении с катионами) характеризуются сильной поляризуемостью и слабой поляризующей способностью, поэтому при взаимодействии разноименных ионов поляризации в соновном подвергается анион. Поляризация ионов оказывает заметное влияние на свойства образуемых ими соединений. Это сказывается на диссоциации солей в водных растворах. Так хлорид бария является сильным элеткролитом и практически полностью диссоциирует, тогда как хлорид ртути почти не диссоциирует на ионы. Это объясняется сильным поляризующим действием иона Hg2+. В отличие от ковалентной связи ионная связь не обладает направленностью. (Направленность связи. Образование ковалентной связи взывается перекрыванием электронных облаков взаимодействующих атомов. Но такое перекрывание возможно только при определенной взаимной ориентации электронных облаков; при этом область перекрывания располоагется в определенном направлении по отношению к взаимодействующим атомам. ) Ненаправленность ионной связи объясняется тем, что электрическое поле иона обладает сферической симметрией, т.е. убывает в любом направлении по одному и тому же закону. Поэтому взаимодействие между ионами осуществляется одинаково независимо от направления. Система из двух зарядов, одинаковых по величине но противополжных по знаку создает в окр пространстве эл поле. Это означает что два разноименных заряда притянувшиеся друг к другу сохранют способность электростатически взаимодействовать с другими ионами. Поэтому ионная связь не обладает насыщаемостью. Т е к данному иону может присоединиться различное число ионов противоположного знака. Это число определяется относит размерами противоположных ионов и тем сто силы притяжения должны преобладать над силами отталкивания. Степень окисления – условный заряд, который возник бы у атома элемента, если бы электроны валентных пар были бы не стянуты, а полностью переданы атому более электроотрицательного элемента.