- •1.Химия как наука о в-вах и их превращениях. Место химии в системе наук. Материя. Химическая форма энергии. Смеси и вещества. Свойства материалов. Анализ и синтез.
- •3. Равновесия. Стабильное и метастабильное равновесие. Виды равновесий. Равновесия статическое и динамическое. Физическое равновесие. Фазовые равновесия. Фазовые диаграммы. Диаграмма воды.
- •2. Ковалентная связь. Основные положения теории отталкивания валентных электронных пар (овэп), теории валентных связей (твс). Гибридизация. Полярная и неполярная ковалентная связь.
- •3. Фазовые диаграммы двухкомпонентных систем. Фракционная перегонка.
- •1. Гальванические элементы. Электродвижущая сила (эдс) гэ. Электрохимический ряд напряжений металлов.
- •3. Химическое равновесие. Константа равновесия. Химическое равновесие и катализ. Факторы, влияющие на смещение химического равновесия. Принцип Ле-Шателье.
- •1. Развитие представлений о строении атома. Составные части атома – ядро, (протоны, нейтроны), элеткроны их заряд и масса. Понятие о масс-спектрометрии.
- •2. Металлическая связь. Кластеры.
- •3. Типы растворов. Способы выражения концентрации. Идеальные и неидеальные растворы. Коллигативные св-ва растворов. Законы Генри, Рауля, Вант-Гоффа.
- •1.Квантовомеханическое объяснение строения атома. Характеристика энергетического состояния электрона квантовыми числами. Атомные орбитали. Принцип Паули. Правило Хунда.
- •2.Степень ионности и ковалентности связи. Природа связи в кс.
- •2. Эффективные заряды атомов в молекулах. Электрический момент. Постоянные и наведенные диполи. Дисперсионное, ориентационное и индукционное взаимодейтсвие.
- •3. Кислоты и основания. Кислотно-основные свойтсва по Аррениусу, Бренстеду-Лоури и Льюису.
- •1.Периодически и непериодически изменяющиеся свойтсва элементов по их расположению в таблице Менделеева. Энергия ионизации атомов, сродство к электрону. Понятие об элеткроотрицательности.
- •2. Водородная связь. Вандерваальсово взаимодействие. Размеры атомов и ионов.
- •3. Соли, основные свойтсва. Гидролиз солей. Примеры.
- •1.Химия как наука о в-вах и их превращениях. Место химии в системе наук. Материя. Химическая форма энергии. Смеси и вещества. Свойства материалов. Анализ и синтез.
- •2. Изолированные и неизолированные системы. Функции состояния, уровнения состояния. Работа теплота и энергия. Температура. Внутренняя энергия.
- •3. Амфотерность. Водородный показатель. Понятие об индикаторах. Кислотно-основное титрование. Буферные растворы.
- •1.Теплота и температура. Основные понятия и фундаментальные законы химии.
- •2. Энтальпия. Первый закон термодинамики. Правила термохимии. Закон Гесса.
- •1.Развитие представлений о строении атома. Составные части атома – ядро (протоны, нейтроны), электроны, их заряд и масса.
- •2.Энтропия. 2 закон термодинамики. 3 закон термодинамики.
- •2.Энергия Гиббса. Направление хим реакций.
- •3. Электродные потенциалы. Электродные потенциалы металлов и факторы, влияющие на их величину. Понятие о стандартных потенциалах. Стандартный (нормальный) водородный потенциал.
- •1.Квантовомеханическое объяснение строения атома. Характеристика энергетического состояния электрона квантовыми числами. Атомные орбитали. Принцип Паули. Правило Хунда.
- •3. Произведение растворимости Условия образования и ратсворения осадков. Ионный обмен и ионообменники.
- •1.Периодически и непериодически изменяющиеся свойтсва элементов по их расположению в таблице Менделеева. Энергия ионизации атомов, сродство к электрону. Понятие об элеткроотрицательности.
- •2.Катализ, катализаторы. Основные типы катализаторов. Принцип микроскопической обратимости. Ингибиторы.
- •3. Радиоактивность. Изотопы и изобары. Виды излучений. Ядерные превращения. Ряды радиоактивных превращений. Ядерное деление и ядерный синтез.
- •2. Энтальпия. Первый закон термодинамики. Правила термохимии. Закон Гесса.
- •3. Кислоты и основания. Кислотно-основные свойтсва по Аррениусу, Бренстеду-Лоури и Льюису.
- •2.Энтропия. 2 закон термодинамики. 3 закон термодинамики.
- •3. Химическое равновесие. Константа равновесия. Химическое равновесие и катализ. Факторы, влияющие на смещение химического равновесия. Принцип Ле-Шателье.
- •2. Изолированные неизолированные сис-мы. Функции состояния, уравнения состояния. Работа, теплота, энергия. Температура. Внутренняя энергия.
- •3. Сольволиз и гидролиз. Гидролиз солей. Степень и константа гидролиза.
- •1.Квантовомеханическое объяснение строения атома. Характеристика энергетического состояния ē квантовыми числами. Атомные орбитали. Принцип наименьшей энергии. Принцип Паули. Правило Хунда.
- •2. Энергия Гиббса и направление хим. Реа-и.
- •1. Ковалентная связь. Основные положения теории отталкивания валентных электронных пар (овэп), теории валентных связей (твс). Гибридизация. Полярная и неполярная ковалентная связь.
- •2. Физическое равновесие. Фазовые равновесия. Понятие о фазовых диагрммах. Фазовая диаграмма воды.
- •3. Гальванические элементы. Электродвижущая сила (эдс) гэ. Электрохимический ряд напряжений металлов.
- •1. Полярная и неполярная ковалентная связь. Степень ионности и ковалентности связи. Природа связей в комплексных соединениях.
- •2. Равновесия. Стабильное и метастабильное равновесие. Виды равновесий. Равновесия статическое и динамическое. Физическое равновесие. Фазовые равновесия. Фазовые диаграммы. Диаграмма воды.
- •3. Практическое использования гальванических элементов. Аккумуляторы, топливные элементы.
- •1.Периодически и непериодически изменяющиеся свойтсва элементов по их расположению в таблице Менделеева. Энергия ионизации атомов, сродство к электрону. Понятие об элеткроотрицательности.
- •2.Катализ, катализаторы. Основные типы катализаторов. Принцип микроскопической обратимости. Ингибиторы.
- •3. Кислоты и основания. Кислотно-основные свойтсва по Аррениусу, Бренстеду-Лоури и Льюису.
- •1. Химия как наука о в-вах и их превращениях. Место химии в системе наук. Материя. Химическая форма энергии. Смеси и вещества. Свойства материалов. Анализ и синтез.
- •2. Водородная связь. Вандерваальсово взаимодействие. Размеры атомов и ионов.
- •3. 3. Химическое равновесие. Константа равновесия. Химическое равновесие и катализ. Факторы, влияющие на смещение химического равновесия. Принцип Ле-Шателье.
- •2. Энтальпия. Первый закон термодинамики. Правила термохимии. Закон Гесса.
- •3. Амфотерность. Водородный показатель. Понятие об индикаторах. Кислотно-основное титрование. Буферные растворы.
- •1. Ковалентая связь. Основные положения метода молекулярных орбиталей.
- •3. Кислоты и основания. Кислотно-основные свойтсва по Аррениусу, Бренстеду-Лоури и Льюису.
- •1. Основные положения электронной теории валентности Косселя-Льюиса. Ионный и ковалентный характер связи. Формулы Льюиса.
- •2. Явление катализа. Гетерогенный катализ. Основные стадии гетерогенного катализа.
- •3. Сольволиз и гидролиз. Гидролиз солей. Степень и константа гидролиза.
- •1. Квантовомеханическое объяснение строения атома. Характеристика энергетического состояния электрона квантовыми числами. Атомные орбитали. Принцип Паули. Правило Хунда.
- •2. Факторы, влияющие на скорость химических реакций. Реакционный механизм. Переходное состояние промежуточная частица, промежуточное соединение.
- •3 Равновесия. Обратимые и необратимые реакции. Константа равновесия. Условия смещения хим. Равновесия. Примеры. Хим. Равновесие и катализ.
- •1. Размеры атомов и ионов. Ионный, ковалентный, металлический и вандерваальсов радиусы.
- •2. Функции состояния системы. Энтальпия. Правила термохимии. Закон Гесса.
- •3. Идеальные и неидеальные растворы. Коллигативные св-ва растворов.
Билет 1
1.Химия как наука о в-вах и их превращениях. Место химии в системе наук. Материя. Химическая форма энергии. Смеси и вещества. Свойства материалов. Анализ и синтез.
1)Химия-наука,изучающая процессы превращения вещ-в, сопровождающиеся изменением состава и структуры, а также взаимные переходы м/у этими процессами и др. формами движения материи.она изучает явл-я, происход. на микроскопическом или атомно-молекулярном уровне. Материя – философская категория, обозначающая объективную реальность, существующую независимо от человеческого сознания. Материя существует в виде двух форм – поле и вещество.Вещество-материальное образование, сост. из элементарных частиц, имеющих собственную массу или массу покоя.Это любой вид материи, облад. собственной массой; любая совокупность атомов и молекул.Поле-материальная среда, в кот. осущ. взаимодействие частиц.В эл-маг поле-взаимодействие м/у заряж. частицами, ядерное поле-взаимод. м/у нуклонами. Полевая форма материи не явл. непосредствен. объектом химии и проявляет прежде всего энергетический характер.
Энергия-это мера способности совершать работу.Единицей измерения энергии и работы в системе СИ-Дж.Энергия может существовать в разнообразных формах: химическая, электрическая, механическая, ядерная и солнечная.Понятие «химическая энергия» относится к хим. системам.
Химической системой наз.вещество или совокупность вещ., ограниченной от окружающей среды реальными или воображаемыми границами и являющиеся предметом рассмотрения с точки зрения их хим.состава и свойств.Хим сист:1)чистые вещества 2)смеси. Чистые вещ-ва- имеют постоян.состав и определ. физ и хим св-ва.они всегда гомогенны, однородны по составу.Абсолютно чистых веществ в природе не существует. Смесь-это совокупность двух и более веществ, смеси могут иметь произвольный состав, который как правило не выражается химической формулой.Если смесь веществ однородна, т.е между различными ее компонентами нет границы раздела, ее наз. Гомогенной.Смеси могут состоять из вещ-в ,которые практически не растворимы или ограниченно растворимы друг в друге, в этом случае их наз. гетерогенными.
Анализ-;
Синтез-
Передача энергии, вызываемая разностью температур между системой и ее окружением или между одной системой и другой системой, называется передачей теплоты. q=m*dT.Если точно известно из какого вещ-ва состоит система, и это вещ-во можно охарактеризовать его удельной теплоемкостью c,то q=m*с*dT.Удельная теплоемкость-это энергия, необходимая для повышения температуры 1 кг данного вещ-ва на 1 кельвин.Молярная теплоемкость вещ-ва- это энергия, необходимая для повышения температуры 1 моля данного вещ-ва на 1 кельвин-Сm.
Температура-одна из функций состояния.она служит мерой средней кинетической энергии всех частиц в системе.Температура-св-во, определяющее направление перехода теплоты от одного тела к другому, где теплота-передача энергии вызываемая разностью температур.Если к системе подводится энергия, то это приводит к возрастанию кинетической энергии частиц системы, следовательно повышается температура системы.
2. Основные виды химической связи. Количественные характеристики химической связи. Длина связи между атомами, энергия связи, валентные углы. Электронная теория валентности Льюиса – Косселя. Ионный и ковалентые характер связи.
Химическая связь – это сила удерживающая вместе два или несколько атомов, ионов, молекул или любую комбинацию из них. Главное при образовании связи - минимум энергии.
Количесвтенные характеристики связи: длина связи, валентный угол, энергия связи.
Длина сязи – расст. между центрами атомов, образующих данную связь.
Энергия связи – это энергия, необходимая для того чтобы разделить два связанных между собой атома и удалить их друг от друга на расстояние на котором они уже не испытывают силы притяжения друг к другу. Для двухатомных молекул энергия связи равна энергии диссоциации молекулы. Для многоатомных молек (АВn) средняя энергия связи равна 1/n энергии распада молекулы на атомы (энергии атомизации).
Кратность хим. связи опр-ся числом общих электр. пар, которые связ-ют атомы. Простая (одинарная): H-H
Двойная связь: O=O
Тройная связь:
Валентный угол – это угол образованный линиями соединяющими центры атомов в направлении действия между ними химической связи. (Валентность – способность атома образовывать химические связи)
Электронная теория валентности Льюиса – Косселя
Согласно ЭТВ атомы образуя связи приближаются к наиболее устойчивой (с низкой Е) электр. конф. Два пути:1) атомы могут терять или приобретать е, образуя ионы: +е=анион, -е=катион. Между анионами и катионами возникает хим. св. ,представляющая собой электрическую силу притяжения - ионная связь.
2) атомы могут приобретать устойчивые внешние электронные конфигурации путем обоществления е, образуя ковалентную связь.
Правило октета – при образовании атомами к-л эл-та хим связи его электронная конф становится как у атомов благородных газов либо в окнце того же периода либо предыдущего.
Формулы Льюиса: H-Cl электроот. Н=2.1, Сl= 3, ∆Е= 3-2.1=0.9 => связь ковалентная полярная. ∆Е > 2.1 (или 1.7) – ионный характер связи, 2.1(или 1.7)>∆Е>0 – коавлентная полярная связь, ∆Е = 0 - ковалентная неполярная связь.
Правила Фаянса
Степень коваленттности велика в случае:1) больших зарядов на ионах С4+ - ков, Nа+ - ио; 2) малых размеров катиона С4+ - 0,015 нм – ков, Nа+ - 0,095 нм – ио; 3) больших размеров аниона I- - 0,216 нм ков; F- - 0,136нм ио.
Ионные соединения
тв в-ва с высокой температурой плавления >400*С, многие растворяются в полярных р-лях, большинство не растворяется в неполярных растворителях; расплавы соединений проводят эл ток, т к состоят из заряженных частиц; водные растворы проводят Эл ток; большинство ионных соединений устойчивы в виде кристаллических решеток.
Ковалентные соединения
Газообразные, жидкие или тв в-ва с низкой температурой плавления <300*С; многие не растворяются в полярных растворителях, большиноство растворимы в неполярных растворителях; р-ры и р-вы не проводят электричество.