Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава07.DOC
Скачиваний:
6
Добавлен:
14.04.2019
Размер:
205.82 Кб
Скачать

Глава 7. Запоминающие устройства пк

После изучения главы вы должны знать:

запоминающие устройства трех уровней внутренней памяти ПК: микропроцессорную, основную и буферную кэш-память, их назначение, основные характеристики;

физическую и логическую структуру основной памяти, ее модули:SIPP,SIMM, DIMM и типы: DRAM, SDRAM, DRDRAM, DDRDRAM;

методы адресации ячеек основной памяти;

принципы организации виртуальной памяти;

назначение кэш-памяти разных уровней.

Персональные компьютеры имеют три основных уровня памяти:

  • микропроцессорная память (МПП);

  • ,

  • основная память (ОП);

  • внешняя память (ВЗУ).

К этим уровням добавляется промежуточная буферная или кэш-память. Кроме этого многие устройства ПК имеют собственную локальную память.

Две важнейших характеристики (емкость памяти и ее быстродействие) трех основных типов памяти приведены в табл. 9.1.

Таблица 9.1. Сравнительные характеристики запоминающих устройств

Тип памяти

Емкость

Быстродействие

МПП

Десятки байтов

tобр = 0,001–0,002 мкс

ОП, в том числе:

ОЗУ

Десятки – сотни мегабайтов

tобр = 0,005–0,02 мкс

ПЗУ

Сотни килобайтов

tобр = 0,035–0,1 мкс

ВЗУ, в том числе:

НМД

Десятки – сотни гигабайтов

tдост = 5–30 мс

Vсчит = 500–3000 Кбайт/с

НГМД

Единицы мегабайтов

tдост = 65–100 мс

Vсчит = 40–150 Кбайт/с

CD и DVD

Сотни - тысячи мегабайтов

tдост = 50–300 мс

Vсчит = 150–5000 Кбайт/с

Быстродействие первых двух типов запоминающих устройств измеряется временем обращения (tобр) к ним, а быстродействие внешних запоминающих устройств — двумя параметрами: временем доступа (tдост) и скоростью считывания (Vсчит):

  • tобр — сумма времени поиска, считывания и записи информации (в литературе это время часто называют временем доступа, что не совсем строго);

  • tдост — время поиска информации на носителе;

  • Vсчит — скорость последовательного считывания смежных байтов информации.

Напомним общепринятые сокращения: с — секунда, мс — миллисекунда, мкс — микросекунда, нс — наносекунда; 1с = 106 мс = 106 мкс = 109 нс.

Статическая и динамическая оперативная память

Оперативная память может формироваться из микросхем динамического (Dynamic Random Access Memory — DRAM) или статического (Static Random Access Memory — SRAM) типа.

Память статического типа обладает существенно более высоким быстродействием, но значительно дороже DRAM. В статической памяти элементы (ячейки) построены на различных вариантах триггеров — схем с двумя устойчивыми состояниями. После записи бита в такую ячейку она может пребывать в этом состоянии столь угодно долго — необходимо только наличие питания. При обращении к микросхеме статической памяти на нее подается полный адрес, который при помощи внутреннего дешифратора преобразуется в сигналы выборки конкретных ячеек. Ячейки SRAM имеют малое время срабатывания (единицы наносекунд), однако микросхемы на их основе отличаются низкой удельной емкостью (единицы Мбит на корпус) и высоким энергопотреблением. Поэтому статическая память используется в основном в качестве микропроцессорной и буферной (кэш-память).

В динамической памяти ячейки построены на основе полупроводниковых областей с накоплением зарядов — своеобразных конденсаторов, — занимающих гораздо меньшую площадь, нежели триггеры, и практически не потребляющих энергии при хранении. Конденсаторы расположены на пересечении вертикальных и горизонтальных шин матрицы; запись и считывание информации осуществляется подачей электрических импульсов по тем шинам матрицы, которые соединены с элементами, принадлежащими выбранной ячейке памяти. При обращении к микросхеме на ее входы вначале подается адрес строки матрицы, сопровождаемый сигналом RAS (Row Address Strobe — строб адреса строки), затем, через некоторое время — адрес столбца, сопровождаемый сигналом CAS (Column Address Strobe — строб адреса столбца). Поскольку конденсаторы постепенно разряжаются (заряд сохраняется в ячейке в течение нескольких миллисекунд), во избежание потери хранимой информации заряд в них необходимо постоянно регенерировать, отсюда и название памяти — динамическая. На подзаряд тратится и энергия и время, и это снижает производительность системы.

Ячейки динамической памяти по сравнению со статической имеют большее время срабатывания (десятки наносекунд), но большую удельную плотность (порядка десятков Мбит на корпус) и меньшее энергопотребление. Динамическая память используется для построения оперативных запоминающих устройств основной памяти ПК.

Кэш-память

Кэш-память имеет несколько уровней. Уровни l1, L2 и L3 это регистровая кэш-память — высокоскоростная память сравнительно большой емкости, являющаяся буфером между ОП и МП и позволяющая увеличить скорость выполнения операций. Регистры кэш-памяти недоступны для пользователя, отсюда и название кэш (cache), что в переводе с английского означает «тайник».

В современных материнских платах применяется конвейерный кэш с блочным доступом (Pipelined Burst Cache). В кэш-памяти хранятся копии блоков данных тех областей оперативной памяти, к которым выполнялись последние обращения, и весьма вероятны обращения в ближайшие такты работы — быстрый доступ к этим данным и позволяет сократить время выполнения очередных команд программы. При выполнении программы данные, считанные из ОП с небольшим опережением, записываются в кэш-память. В кэш-память записываются и результаты операций, выполненных в МП.

По принципу записи результатов в оперативную память различают два типа кэш-памяти:

  • в кэш-памяти «с обратной записью» результаты операций прежде, чем их записать в ОП, фиксируются, а затем контроллер кэш-памяти самостоятельно перезаписывает эти данные в ОП;

  • в кэш-памяти «со сквозной записью» результаты операций одновременно, параллельно записываются и в кэш-память, и в ОП.

Микропроцессоры, начиная от МП 80486, обладают встроенной в основное ядро МП кэш-памятью (или кэш-памятью 1-го уровня — L1), чем, в частности, и обусловливается их высокая производительность. Микропроцессоры Pentium имеют кэш-память отдельно для данных и отдельно для команд: у МП Pentium и Pentium Pro емкость этой памяти небольшая — по 8 Кбайт, у следующих версий МП Pentium  по 16 Кбайт. У Pentium Pro и выше кроме кэш-памяти 1-го уровня есть и встроенная на микропроцессорную плату кэш-память 2-го уровня (L2) емкостью от 128 Кбайт до 2048 Кбайт. Эта встроенная кэш-память работает либо на полной тактовой частоте МП, либо на его половинной тактовой частоте.

Следует иметь в виду, что для всех МП может использоваться дополнительная кэш-память 2-го (L2) или 3-го (L3) уровня, размещаемая на материнской плате вне МП, емкость которой может достигать нескольких мегабайтов (кэш на MB относится к уровню 3, если МП, установленный на этой плате, имеет кэш 2-го уровня). Время обращения к кэш-памяти зависит от тактовой частоты, на которой кэш работает, и составляет обычно 1–2 такта. Так, для кэш-памяти L1 МП Pentium характерно время обращения 2–5 нс, для кэш-памяти L2 и L3 это время доходит до 10 нс. Пропускная способность кэш-памяти зависит и от времени обращения, и от пропускной способности интерфейса, и лежит в широких пределах от 300 до 3000 Мбайт/с.

Использование кэш-памяти существенно увеличивает производительность системы. Чем больше размер кэш-памяти, тем выше быстродействие, но эта зависимость нелинейная. Имеет место постепенное уменьшение скорости роста общей производительности компьютера с ростом размера кэш-памяти. Для современных ПК рост производительности, как правило, практически прекращается после 1 Мбайт кэш-памяти L2. Создается кэш-память L1, L2, L3 на основе микросхем статической памяти.

В современных ПК применяется и кэш-память между внешними запоминающими устройствами на дисках и оперативной памятью, обычно относящаяся к 3-му уровню, реже, если есть кэш L3 на системной плате, к 4-му уровню. Кэш-память для ВЗУ создается либо в поле оперативной памяти, либо непосредственно в модуле самого ВЗУ.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]