Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
VAZhNO_BIOHIMIYa (1).doc
Скачиваний:
84
Добавлен:
14.04.2019
Размер:
679.94 Кб
Скачать

2.Четвертичная структура белка. Нативная конформация и денатурация.

Под четвертичной структурой подразумевают способ укладки в пространстве отдельных полипептидных цепей, обладающих одинаковой (или разной) первичной, вторичной или третичной структурой, и формирование единого в структурном и функциональном отношениях макромолекулярно-го образования. Многие функциональные белки состоят из нескольких полипептидных цепей, соединенных не главновалентными связями, а неко-валентными (аналогичными тем, которые обеспечивают стабильность третичной структуры). Каждая отдельно взятая полипептидная цепь, получившая название протомера, мономера или субъединицы, чаще всего не обладает биологической активностью. Эту способность белок приобретает при определенном способе пространственного объединения входящих в его состав протомеров, т.е. возникает новое качество, не свойственное мономерному белку. Образовавшуюся молекулу принято называть олигоме-ром (или мультимером). Олигомерные белки чаще построены из четного числа протомеров (от 2 до 4, реже от 6 до 8) с одинаковыми или разными молекулярными массами – от нескольких тысяч до сотен тысяч. В частности, молекула гемоглобина состоит из двух одинаковых α- и двух β-полипептидных цепей, т.е. представляет собой тетрамер. На рис. 1.23 представлена структура молекулы гемоглобина, а на рис. 1.24 хорошо видно, что молекула гемоглобина содержит четыре полипептидные цепи, каждая из которых окружает группу гема – пигмента, придающего крови ее характерный красный цвет

В определенных условиях (присутствие солей, 8М мочевины или резкие изменения рН) молекула гемоглобина обратимо диссоциирует на две α-и две β-цепи. Эта диссоциация обусловлена разрывом водородных связей. После удаления солей или мочевины происходит автоматическая ассоциация исходной молекулы гемоглобина

Классическим примером олигомерной молекулы, или надмолекулярной структуры, является вирус табачной мозаики, представляющий собой гигантскую молекулу с мол. м. около 40•106. Он состоит из одной молекулы РНК (см. главу 3) и 2130 белковых субъединиц, масса каждой из которых составляет 17500. Длина вируса примерно 300 нм, ширина – около 17 нм. РНК вируса имеет спиралеобразную форму. Вокруг РНК нанизаны белковые частицы, образующие гигантскую надмолекулярную спиральную структуру, в которой насчитывается около 130 витков Удивительной особенностью вируса является то, что после разъединения соответствующими приемами (добавление детергента) РНК и белковых субъединиц и последующего их смешивания (с предварительным удалением детергента) наблюдаются полная регенерация четвертичной структуры, восстановление всех физических параметров и биологических функций (инфектив-ная способность вируса). Подобная точность процесса спонтанной самосборки вируса обеспечивается, вероятнее всего, информацией, содержащейся в первичной структуре молекулы РНК и белковых субъединиц. Таким образом, последовательность аминокислот содержит в себе информацию, которая реализуется на всех уровнях структурной организации белков.

Многие ферменты также обладают четвертичной структурой, например фосфорилаза а, состоящая из двух идентичных субъединиц, в каждой из которых по две пептидные цепи. Вся молекула фосфорилазы а, таким образом, представляет собой тетрамер. Отдельные субъединицы чаще всего не обладают каталитической активностью; вообще регуляторные ферменты имеют четвертичную олигомерную структуру. Они наделены функцией обеспечения в клетке требуемых скоростей химических реакций.

Наиболее изученным олигомерным ферментом является лактатдегидро-геназа (она катализирует обратимое превращение пировиноградной кислоты в молочную), содержащая два типа полипептидных цепей: Н – сердечный тип (от англ. heart – сердце) и М – мышечный тип (от англ. muscle – мышца) – и состоящая из 4 субъединиц. Этот фермент благодаря различным сочетаниям субъединиц может существовать в 5 формах. Такие ферменты получили название изоферментов, или, в соответствии с новой классификацией, множественных форм ферментов (см. главу 4).

К настоящему времени субъединичная структура обнаружена у нескольких сотен белков. Однако только для немногих белков, в том числе для молекулы гемоглобина, методом рентгеноструктурного анализа расшифрована четвертичная структура . Основными силами, стабилизирующими четвертичную структуру, являются нековалентные связи между контактными площадками протомеров, которые взаимодействуют друг с другом по типу комплементарности – универсальному принципу, свойственному живой природе. Структура белка после его синтеза в рибосоме может частично подвергаться модификации (посттрансляционный процессинг): например, при превращении предшественников ряда ферментов или гормонов (инсулин).

Таким образом, имеются все основания для подтверждения мнения о существовании 4 уровней структурной организации белков. Более того, каждый индивидуальный белок характеризуется уникальной структурой, обеспечивающей уникальность его функций. Поэтому выяснение структуры разнообразных белков может служить ключом к познанию природы живых систем и соответственно сущности жизни. На этом пути научного поиска могут быть решены также многие проблемы наследственных заболеваний человека, в основе которых лежат дефекты структуры и биосинтеза белков.

Некоторые исследователи склонны рассматривать, и не без основания, существование пятого уровня структурной организации белков. Речь идет о полифункциональных макромолекулярных комплексах, или ассоциатах из разных ферментов, получивших название метаболических олигомеров, или метаболонов, и катализирующих весь путь превращений субстрата (синте-тазы высших жирных кислот, пируватдегидрогеназный комплекс, дыхательная цепь).

Билет 12 1. Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов.

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Они являются одним из основных источников энергии, образующейся в результате обмена веществ организма. Они принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Была установлена многообразная биологическая активность полисахаридов растительного происхождения: антибиотическая, противовирусная, противоопухолевая, антидотная[источник не указан 218 дней]. Полисахариды растительного происхождения выполняют большую роль в уменьшении липемии и атероматоза сосудов благодаря способности давать комплексы с белками и липо-протеидами плазмы крови.

К полисахаридам относятся, в частности:

декстрин — полисахарид, продукт гидролиза крахмала;

крахмал — основной полисахарид, откладываемый, как энергетический запас у растительных организмов;

гликоген — полисахарид, откладываемый, как энергетический запас в клетках животных организмов, но встречается в малых количествах и в тканях растений;

целлюлоза — основной структурный полисахарид клеточных стенок растений;

галактоманнаны — запасные полисахариды некоторых растений семейства бобовых, такие как гуаран и камедь рожкового дерева;

глюкоманнан — полисахарид, получаемый из клубней конняку, состоит из чередующихся звеньев глюкозы и маннозы, растворимое пищевое волокно, уменьшающее аппетит;

амилоид — применяется при производстве пергаментной бумаги.

Функциональные свойства

Структурные полисахариды придают клеточным стенкам клеток прочность.

Водорастворимые полисахариды не дают клеткам высохнуть.

Резервные полисахариды по мере необходимости расщепляются на моносахариды и используются организмом.

Свойства. Большинство ПОЛИСАХАРИДЫ-бесцв. аморфные порошки, разлагающиеся при нагревании выше 200 °С. ПОЛИСАХАРИДЫ, молекулы которых обладают разветвленной структурой или имеют полианионный характер благодаря карбоксильным или сульфатным группам, как правило, достаточно легко растворим в воде, несмотря на высокие молекулярной массы, тогда как линейные ПОЛИСАХАРИДЫ, обладающие жесткими вытянутыми молекулами (целлюлоза, хитин), образуют прочные упорядоченные надмолекулярные ассоциаты, в результате чего практически не растворим в воде. Известны промежуточные случаи блочных молекул ПОЛИСАХАРИДЫ, в которых одни участки склонны к межмол. ассоциации, а другие-нет; водные растворы таких ПОЛИСАХАРИДЫ при определенных условиях переходят в гели (пектины, альгиновые кислоты, карастворагинаны, агар).

Растворимые ПОЛИСАХАРИДЫ можно осадить из водных растворов смешивающимися с водой органическое растворителями (например, этанолом, метанолом, ацетоном). Растворимость конкретного ПОЛИСАХАРИДЫ определяет методику выделения его из природные объекта. Так, целлюлозу и хитин получают, отмывая подходящими реагентами все сопутствующие вещества, тогда как прочие полисахариды вначале переводят в раствор и выделяют затем фракционным осаждением растворителями, с помощью образования нерастворимых комплексов или солей, ионообменной хроматографией и т.д.

Солюбилизация сложных надмолекулярных комплексов (например, ПОЛИСАХАРИДЫ клеточных стенок) требует подчас достаточно жестких условий, не исключающих расщепления некоторых химических связей. Выделенные полисахаридные препараты обычно представляют собой смеси полимергомологичных молекул; в случае нерегулярных ПОЛИСАХАРИДЫ дополнительной фактором неоднородности служит так называемой микрогетерогенность-различия отдельных молекул друг от друга по степени протекания постполимеризац. модификаций.

Из химический реакций ПОЛИСАХАРИДЫ важное значение имеет гидролиз глико-зидных связей под действием разбавленый минеральных кислот, позволяющий получить моносахариды, входящие в состав ПОЛИСАХАРИДЫ В отличие от олигосахаридов, восстанавливающие свойства или мутарота-ция (связанные с наличием в молекуле концевой карбонильной группы) в ПОЛИСАХАРИДЫ проявляются слабо из-за их больших мол. масс. Наличие множества гидроксильных групп позволяет проводить реакции алкилирования или ацилирования; некоторые из них имеют существ. значение для установления строения или практическое использования ПОЛИСАХАРИДЫ

Установление строения. Установление первичной структуры ПОЛИСАХАРИДЫ складывается из последоват. решения трех задач: определения состава, типов связей между моносахаридами и последовательности отдельных моносахаридных звеньев. Первая задача решается гидролизом и количественное определением (одним из видов количественное хроматографии, а в отдельных случаях-с помощью фотоколориметрии) всех входящих в состав ПОЛИСАХАРИДЫ моносахаридов, а также неуглеводных заместителей (если они имеются).

Для определения типов связей между моносахаридами обычно служит метод метилирования, который заключается в превращении всех свободный гидроксильных групп ПОЛИСАХАРИДЫ в метиловые эфиры. Поскольку эти группировки устойчивы в уcло виях кислотного гидролиза гликозидных связей, то гидролиз метилированного ПОЛИСАХАРИДЫ дает набор метиловых эфиров моносахаридов. Они различаются числом групп СН3 в зависимости от положения-моносахаридного остатка в полимерной молекуле. Так, концевые невосстанавливающие остатки гексоз дают тетра-О-метилпроизводные, остатки гексоз из линейных участков цепей-три-О-метилпроизводные, из точек разветвления-ди-О-метилпроизводные и т.д. Наличие свободный гидроксильных групп в метилированных моносахаридах обусловлено тем, что в родоначальном ПОЛИСАХАРИДЫ эти гидроксилы участвовали в образовании либо циклический фо"рм моносахаридов (пиранозных или фуранозных), либо гликозидных связей. Поэтому определение положения групп СН3 (а следовательно, и гидроксильных) в каждом таком производном позволяет в принципе установить размер цикла родоначаль-ного моносахаридного остатка в полимерной цепи и место замещения его соседним моносахаридным остатком (или остатками). Существующие методики метилирования ПОЛИСАХАРИДЫ (например, метод Хакомори- действие NaH в ДМСО и затем СН3I) обладают весьма высокой эффективностью и пригодны для микроколичеств вещества. Анализ продуктов метилирования проводится с применением хромато-масс-спектрометрии и дает надежные сведения о положении групп СН3 в производных моносахаридов. Сведения о конфигурации гликозидных центров и последовательности моносахаридных остатков в полимере получают, проводя частичное расщепление молекул ПОЛИСАХАРИДЫ и устанавливая строение образующихся при этом олигосахаридов. Универсальным методом расщепления является частичный кислотный гидролиз, однако в общем случае он дает сложные смеси олигосахаридов с небольшими выходами. Лучшие результаты получаются при более специфический воздействии на молекулу ПОЛИСАХАРИДЫ химический реагентами (ацетолиз, сольволиз безводным HF) или ферментами.

Своеобразный способ фрагментации молекул ПОЛИСАХАРИДЫ-расщепление по Смиту, включающее периодатное окисление, восстановление полученного полиальдегида в полиол действием NaBH4 и мягкий кислотный гидролиз, разрушающий ацетальные группировки (но не гликозидные связи моносахаридов, не затронутых периодатным окислением). Метод Смита часто позволяет получить фрагменты молекул ПОЛИСАХАРИДЫ, недоступные при обычном кислотном или ферментативном гидролизе (стадия образования полиальдегидов не показана):

С химический методами установления первичной структуры ПОЛИСАХАРИДЫ успешно конкурирует спектроскопия ЯМР. Спектры ПМР и ЯМР13С содержат ценнейшую информацию о функцион. Составе ПОЛИСАХАРИДЫ, положениях межмономерных связей, размерах циклов моносахаридных остатков, конфигурациях гликозидных центров и последовательности моносахаридов в цепи; из спектров ЯМР13С можно определить абс. конфигурации отдельных моносахаридных остатков (если известны абс. конфигурации соседних звеньев), а также получить данные о регулярном строении ПОЛИСАХАРИДЫ Если известен моносахаридный состав линейного регулярного ПОЛИСАХАРИДЫ, построенного из повторяющихся олигосахаридных звеньев, то задача установления его полного строения по спектру ЯМР успешно решается с помощью соответствующих компьютерных программ. Др. физических-химический методы исследования применяются для определения мол. масс ПОЛИСАХАРИДЫ (вискозиметрия, светорассеяние, ультрацентрифугирование) и конформации молекул в твердом состоянии (рентгенография напряженных волокон или пленок). Синтез ПОЛИСАХАРИДЫ Синтез природных ПОЛИСАХАРИДЫ и их аналогов представляет интерес для установления связи их строения и биологическое активности, в первую очередь иммунологич. свойств бактериальных ПОЛИСАХАРИДЫ Поликонденсация моносахаридов под действием кислых катализаторов приводит к полимерным продуктам, содержащим хаотич. набор межмономерных связей, катионная полимеризация защищенных 1,6-ангидридов гексоз-к линейным 1,6-связанным ПОЛИСАХАРИДЫ Для общего решения задачи направленного синтеза сложных природных ПОЛИСАХАРИДЫ необходимы методы стереоспецифический гликозилирования, пригодные для полимеризации или поликонденсации олигосахаридов.

Примером Такой реакции служит взаимодействие цианоэтилидено-вых производных углеводов с тритиловыми эфирами Сахаров, приводящее к 1,2-транс-гликозидам:

Поскольку обе группировки (тритиловую и цианоэтилидено-вую) можно ввести в одну молекулу моно- или олигосахари-да, поликонденсация такого производного приводит к ПОЛИСАХАРИДЫ заданного строения. Этим путем были синтезированы ПОЛИСАХАРИДЫ, содержащие ди-, три- и тетрасахаридные повторяющиеся звенья, в т.ч. идентичные природным ПОЛИСАХАРИДЫ бактериального происхождения. Др. перспективный подход к синтезу ПОЛИСАХАРИДЫ-химико-ферментативный метод, в котором наиболее трудные стадии получения олигосахаридных предшественников или их полимеризация проводятся с использованием соответствующих ферментов. Показано, что этим путем можно получать не только природные ПОЛИСАХАРИДЫ, но и их аналоги; недостатком метода является сравнительно малая доступность необходимых ферментов.

2.ЭКСПРЕССИЯ ГЕНА, программируемый геномом процесс биосинтеза белков и(или) РНК. При синтезе белков экспрессия гена включаеттранскрипцию - синтез РНК с участием фермента РНК-полимеразы; трансляцию - синтез белка на матричной рибонуклеиновой кислоте, осуществляемый в рибосомах, и (часто) посттрансляционную модификацию белков. Биосинтез РНК включает транскрипцию РНК наматрице ДНК, созревание и сплайсинг. Экспрессия гена определяется регуляторными последовательностями ДНК; регуляция осуществляется на всех стадиях процесса. Уровень экспрессии гена (кол-во синтезируемого белка или РНК) строго регулируется. Для одних генов допустимы вариации, иногда в значит. пределах, в то время как для других генов даже небольшие изменения кол-ва продукта в клетке запрещены. Нек-рые заболевания сопровождаются повышенным уровнем экспрессии гена в клетках пораженныхтканей, напр. определенных белков, в т. ч. онкогенов при онкологич. заболеваниях, антител при аутоиммунных заболеваниях.  Различают экспрессию гена: 1) конститутивную - происходящую в клетке независимо от внешних обстоятельств. Сюда относят экспрессию генов, определяющих синтез макромолекул, необходимых для жизнедеятельности всех клеток, и спец. генов(тканеспецифичная экспрессия гена), характерных для конкретного вида клеток. 2) Индуцибельная экспрессия гена определяется действием к.-л. агентов - индукторов. Ими м. б. гормоны, ростовые в-ва и в-ва, определяющие дифференцировку клеток (напр., ретиноевая к-та). Индукция может происходить на определенной стадии развития организма, в определенной ткани; время и место индукции регулируются геномом. Как правило, изменения в экспрессии гена носят необратимый характер, по крайней мере в нормальных клетках. У раковых и трансформированных клеток эта закономерность может нарушаться. В роли индукторов м. б. также и факторы внешней среды, напр. изменение т-ры, питательные в-ва. После прекращения действия индуктора первоначальная картина экспрессии гена восстанавливается (временная экспрессия гена).  Большое значение экспрессия гена имеет в оптимизации синтеза белков методами генетич. инженерии. В качестве продуцента используют бактерии, дрожжи, растительные и животные клетки и даже живые организмы, такие организмы называют трансгенными. Искусственные гены конструируются таким образом, чтобы получить макс. кол-во желаемого продукта с миним. затратами, другими словами, чтобы достичь максимально высокого уровня экспрессии активного белка. Для сильной экспрессии в искусств, гене используют "сильные" регуляторные последовательности генов, обеспечивающие наибольшую продукцию белка. Часто эти последовательностиДНК имеют вирусное происхождение. Описаны случаи экспрессии целевого продукта в бактериях до уровня 50% от всего клеточногобелка, Как правило, суперэкспрессирован-ные белки нерастворимы и секретируются в периплазматич. пространство бактерии. Особую сложность представляет получение белков, токсичных для клетки. В таких случаях используют строго индуцибельные системы (напр., РНК-по-лимеразу фага Т7 и ген с промотором для нее) или системы, позволяющие быстро выводить продукт наружу (секретирую-щие системы). Тем не менее, достичь высокой продукции нек-рых белков все же не удается. наиб. дорогим является получение белков в животных клетках.

Билет 13 1.Нуклеи́новые кисло́ты  (от лат. nucleus — ядро) — высокомолекулярные органические соединения, биополимеры (полинуклеотиды), образованные остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной 

Азотистые основания

Азотистые основания — это ароматические гетероциклические соединения, производные пиримидина или пурина. Пять соединений этого класса являются основными структурными компонентами нуклеиновых кислот. Общими для всей живой материи. Пуриновые основания аденин (Ade, но не А) и гуанин (Guа), а также пиримидиновое основание цитозин (Cyt), входят в состав ДНК и РНК. В состав ДНК входит также тимин (Thy), 5-метил-производное урацила. Основание урацил (Ura) входит только в состав РНК. В ДНК высших организмов в небольшом количестве присутствует 5-метилцитозин. Производные азотистых оснований присутствуют в тРНК (см.с. 88) и в других типах РНК.  Молекулы Нуклеиновые кислоты — длинные полимерные цепочки с молекулярной массой 2,5 · 104—4 · 109, построенные из мономерных молекул — нуклеотидов так, что гидроксильные группы у 31 и 51 углеродных атомовуглевода соседних нуклеотидов связаны остатком фосфорной кислоты. В состав РНК в качестве углевода входит рибоза, а азотистые компоненты представлены аденином, гуанином (пуриновые основания), урацилом и цитозином (пиримидиновые основания). В ДНК углеводным компонентом является дезоксирибоза, а урацил заменен тимином (5-метилурацилом). Фосфат и сахар составляют неспецифическую часть в молекуле нуклеотида, а пуриновое или пиримидиновое основание — специфическую. В составе большинства Нуклеиновые кислоты обнаружены в небольших количествах также некоторые другие (главным образом метилированные) производные пуринов и пиримидинов — т. н. минорные основания. Цепи Нуклеиновые кислоты содержат от нескольких десятков до многих тысяч нуклеотидных остатков, расположенных линейно в определённой последовательности, уникальной для данной Нуклеиновые кислоты Т. о., как РНК, так и ДНК представлены огромным множеством индивидуальных соединений. Линейная последовательность нуклеотидов определяет первичную структуру Нуклеиновые кислоты Вторичная структура Нуклеиновые кислоты возникает в результате сближения определённых пар оснований, а именно: гуанина с цитозином и аденина с урацилом (или тимином) по принципу комплементарности за счёт водородных связей, а также гидрофобных взаимодействий между ними.   Биологическая роль Нуклеиновые кислоты заключается в хранении, реализации и передаче наследственной информации, «записанной» в молекулах Нуклеиновые кислоты в виде последовательности нуклеотидов — т. н.генетического кода. При делении клеток — митозе — происходит самокопирование ДНК — её репликация, в результате чего каждая дочерняя клетка получает равное количество ДНК, заключающей программу развития всех признаков материнской клетки. Реализация этой генетической информации в определённые признаки осуществляется путём биосинтеза молекул РНК на молекуле ДНК (транскрипция) и последующего биосинтеза белков с участием разных типов РНК (трансляция).

Билет 14 1. ДНК и РНК В 1953 году Дж. Уотсон и Ф. Крик предложили модель строения молекулы ДНК, объясняющую, как эта молекула могла бы передавать информацию и   воспроизводить саму себя. Молекула ДНК представляет собой две спирально закрученные одна вокруг другой нити. Каждая нить представляет собой полимер, мономерами которого являются нуклеотиды. Нуклеотид это химическое соединение остатков трех веществ: азотистого основания, углевода (моносахарида - дезоксирибозы) и фосфорной кислоты. ДНК образована соединением четырех видов нуклеотидов. Нуклеотиды отличаются только по азотистым основаниям, в соответствии с которыми их называют: аденин(А), гуанин(Г), тимин(Т), цитозин(Ц). Соединение нуклеотидов в нити ДНК происходит через углевод одного нуклеотида и фосфорную кислоту соседнего. Они соединяются прочной ковалентной связью. Принцип комплементарности оснований: Две цепи ДНК соединены в одну молекулу азотистыми основаниями. При этом аденин соединяется только с тимином, а гуанин с цитозином. В связи с этим последовательность нуклеотидов в одной цепочке жестко определяет последовательность в другой цепочке. Строгое соответствие нуклеотидов друг другу в парных цепочках молекулы ДНК получило название комплементарности. Это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы.        Главные отличительные особенности генетического материала состоят в том, что он служит носителем информации и способен к самовоспроизведению. При репликации (самоудвоении) молекулы ДНК две ее цепи отделяются друг от друга и около каждой из них образуется новая цепь, комплементарная старой. РНК.        Молекулы РНК не столь велики, как молекулы ДНК. РНК не двойная, а одинарная цепочка из нуклеотидов. Структура РНК создается чередованием четырех типов нуклеотидов. Углевод рибоза; в РНК вместо азотистого основания тимина входит урацил(У).В клетке имеется три вида РНК. Названия их связаны с выполняемыми функциями. 

Комплементарность пространственная взаимодополняемость (взаимное соответствие) поверхностей взаимодействующих молекул или их частей, приводящая, как правило, к образованию вторичных водородных связей между ними. Комплементарность проявляется в структуре двуспиральных ДНК и РНК, где две полинуклеотидные цепи образуют в результате комплементарного взаимодействия пар пуриновых и пиримидиновых оснований (А-Т, Г-Ц) двуспиральную молекулу.

Комплементарность лежит в основе многих явлений биологической специфичности, связанных с «узнаванием> на молекулярном уровне, — транскрипциибиосинтеза белка и др.

2. КЛАССИФИКАЦИЯ И НОМЕНКЛАТУРА ФЕРМЕНТОВ

В основу принятой классификации положен принцип – тип катализируемой реакции , который является специфичным для действия любого фермента. Этот принцип логично использовать в качестве основы для классификации и номенклатурыферментов.

Тип катализируемой химической реакции в сочетании с названием субстрата (субстратов) служит основой для систематического наименования ферментов. Согласно Международной классификации, ферменты делят на шесть главных классов, в каждом из которых несколько подклассов: 1) оксидоредуктазы; 2) трансферазы; 3) гидролазы; 4) лиазы; 5) изомеразы; 6) лигазы(синтетазы) (табл. 4.5).

Оксидоредуктазы. К классу оксидоредуктаз относят ферменты, катализирующие с участием двух субстратов окислительно-восстановительные реакции, лежащие в основе биологического окисления. Систематические названия их составляют по форме «донор: акцептор оксидоредуктаза». Например, лактат: НАД+ оксидоредуктаза для лактатдегидрогеназы (ЛДГ).

Различают следующие основные оксидоредуктазы: аэробные дегидро-геназы или оксидазы, катализирующие перенос протонов(электронов) непосредственно на кислород; анаэробные дегидрогеназы, ускоряющие перенос протонов (электронов) на промежуточныйсубстрат, но не на кислород; цитохромы, катализирующие перенос только электронов. К этому классу относят также гемсодержащиеферменты каталазу и пероксидазу, катализирующие реакции с участием перекиси водорода.

Трансферазы. К классу трансфераз относят ферменты, катализирующие реакции межмолекулярного переноса различных атомов, групп атомов и радикалов. Наименование их составляется по форме «донор: транспортируемая группа – трансфераза».

Различают трансферазы, катализирующие перенос одноуглеродных остатков, ацильных, гликозильных, альдегидных или кетонных, нуклеотидных

остатков, азотистых групп, остатков фосфорной и серной кислот и др. Например: метил- и формилтрансферазы, ацетилтрансферазы, амино-трансферазы, фосфотрансферазы и др.

Гидролазы. В класс гидролаз входит большая группа ферментов, катализирующих расщепление внутримолекулярных связей органических веществ при участии молекулы воды. Наименование их составляют по форме «субстрат-гидролаза». К ним относятся: зстеразы – ферменты, катализирующие реакции гидролиза и синтеза сложных эфиров; гликозидазы, ускоряющие разрыв гликозидных связей; фосфатазы и пептидгидролазы, катализирующие гидролиз фосфоангидридных и пептидных связей; ами-дазы, ускоряющие разрыв амидных связей, отличных от пептидных, и др.

Лиазы. К классу лиаз относят ферменты, катализирующие разрыв связей С—О, С—С, С—N и других, а также обратимые реакции отщепления различных групп от субстратов не гидролитическим путем. Эти реакции сопровождаются образованием двойной связи или присоединением групп к месту разрыва двойной связи. Ферменты обозначают термином «субстрат-лиазы». Например, фумарат-гидратаза (систематическое название «L-малат-гидролаза») катализирует обратимое отщепление молекулы воды от яблочной кислотыс образованием фумаровой кислоты. В эту же группу входят декарбоксилазы (карбокси-лиазы), амидин-лиазы и др.

Изомеразы. К классу изомераз относят ферменты, катализирующие взаимопревращения оптических и геометрических изомеров. Систематическое название их составляют с учетом типа реакции: «субстрат – цис-транс-изомераза». Если изомеризация включает внутримолекулярный перенос группы, фермент получает название «мутаза».

К этому же классу относят рацемазы и эпимеразы, действующие на амино- и оксикислоты, углеводы и их производные; внутримолекулярные оксидоредуктазы, катализирующие взаимопревращения альдоз и кетоз; внутримолекулярные трансферазы, переносящие ацильные, фосфорильные и другие группы, и т.д.

Лигазы (синтетазы). К классу лигаз относят ферменты, катализирующие синтез органических веществ из двух исходных молекул с использованием энергии распада АТФ (или другого нуклеозидтрифосфата). Систематическое название их составляют по форме «X : Yлигаза», где X и Y обозначают исходные вещества. В качестве примера можно назвать L-глутамат: аммиак лигазу (рекомендуемое сокращенное название «глутаминсинтета-за»), при участии которой из глутаминовой кислоты и аммиака в присутствии АТФсинтезируется глутамин.

Билет 15 1 Ферменты как биологические катализаторы. Все реакции в живой клетке протекают при умеренной температуре, нормальном давлении и нейтральной среде. При отсутствии ферментов реакции синтеза и распада протекают в таких условиях очень медленно. Катализаторы белковой природы – ферменты значительно ускоряют биохимические реакции, не изменяя их общий результат. Действие ферментов отличается высокой специфичностью: фермент катализирует только одну реакцию или действует на один тип связи. Специфичность фермента во многом определяется его активным центром. Активный центр – участок фермента, в котором происходит катализ за счет тесного (многоточечного) контакта между молекулами фермента и специфического вещества – субстрата. Активным центром выступает или функциональная группа, или отдельная аминокислота. Чаще всего для каталитического действия необходимо несколько аминокислотных остатков (в среднем от 3 до 12), расположенных в определенном порядке . Активный центр также может формироваться металлами, витаминами и другими соединениями небелковой природы – коферментами, связанными с ферментом. При этом форма и химическое строение активного центра таковы, что с ним могут связываться только определенные субстраты в силу их соответствия друг другу. Роль остальных аминокислотных остатков в крупной молекуле фермента состоит в том, чтобы обеспечить его молекуле соответствующую глобулярную форму, которая нужна для эффективной работы активного центра. Кроме того, вокруг крупной молекулы фермента возникает сильное электрическое поле. В таком поле становится возможной ориентация молекул субстрата и приобретение ими асимметричной формы. Это приводит к ослаблению химических связей, и катализируемая реакция происходит с меньшей начальной затратой энергии, а следовательно, и с большей скоростью. Например, одна молекула фермента каталазы может расщепить за 1 минуту более 5 миллионов молекул пероксида водорода (Н2О2).

2. Цикл трикарбоновых кислот (цикл Кребса, цитратный цикл) — центральная часть общего пути катаболизма, циклический биохимический аэробный процесс, в ходе которого происходит превращение двух- и трёхуглеродных соединений, образующихся как промежуточные продукты в живых организмах при распаде углеводов, жиров и белков, до CO2. При этом освобождённый водород направляется в цепь тканевого дыхания, где в дальнейшем окисляется до воды, принимая непосредственное участие в синтезе универсального источника энергии — АТФ. Цикл Кребса — это ключевой этап дыхания всех клеток, использующих кислород, центр пересечения множества метаболических путей в организме. Кроме значительной энергетической роли циклу отводится также и существенная пластическая функция, то есть это важный источник молекул-предшественников, из которых в ходе других биохимических превращений синтезируются такие важные для жизнедеятельности клетки соединения как аминокислоты, углеводы, жирные кислоты и др. Цикл превращения лимонной кислоты в живых клетках был открыт и изучен немецким биохимиком Хансом Кребсом, за эту свою работу он (совместно с Ф. Липманом) был удостоен Нобелевской премии (1953 год). У эукариот все реакции цикла Кребса протекают внутри митохондрий, причём катализирующие их ферменты, кроме одного, находятся в свободном состоянии в митохондриальном матриксе, исключение составляет сукцинатдегидрогеназа, которая локализуется на внутренней митохондриальной мембране, встраиваясь в липидный бислой. У прокариот реакции цикла протекают в цитоплазме. Для более легкого запоминания кислот, участвующих в цикле Кребса, существует мнемоническое правило: Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед, что соответствует ряду - цитрат, (цис-)аконитат, изоцитрат, (альфа-)кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]