Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
VAZhNO_BIOHIMIYa (1).doc
Скачиваний:
66
Добавлен:
14.04.2019
Размер:
679.94 Кб
Скачать

[Моносахариды в природе

Моносахариды входят в состав сложных углеводов (гликозидыолигосахаридыполисахариды) и смешанных углеводсодержащих биополимеров (гликопротеидыгликолипиды и др.). При этом моносахариды связаны друг с другом и с неуглеводной частью молекулы гликозидными связями. При гидролизе под действием кислот или ферментов эти связи могут рваться с высвобождением моносахаридов. В природе свободные моносахариды, за исключением D-глюкозы и D-фруктозы, встречаются редко. Биосинтез моносахаридов из углекислого газа и воды происходит в растениях (см. Фотосинтез); с участием активированных производных моносахаридов — нуклеозиддифосфатсахаров — происходит, как правило, биосинтез сложных углеводов. Распад моносахаридов в организме (например, спиртовое брожениегликолиз) сопровождается выделением энергии.

[Применение

Некоторые свободные моносахариды и их производные (например, глюкозафруктоза и её дифосфат и др.) используются в пищевой промышленности и медицине.

2 Рибосома

(от «рибонуклеиновая кислота» и сома), органоид клетки, осуществляющий биосинтез белка. Представляет собой частицу сложной формы диам. ок. 20 нм. Р. состоит из 2 неравных субчастиц (субъединиц) — большой и малой, на к-рые может диссоциировать. Различают 2 осн. типа Р.— эукариотные (с константами седиментации: целой Р.— 80 S, малой субчастицы — 40 S, большой — 60 S) и прокариотные(соответственно 70 S, 30 S и 50 S). Кроме того, в митохондриях и хлоропластах содержатся мелкие Р. (константа седиментации 55 S— 70 S), осуществляющие автономный синтез белка. В бактериальной клетке содержится 10\\4 — 10\\5 Р. В состав Р. входит рРНК (3 молекулы у прокариот и 4 — у эукариот) и белки. Молекулы рРНК составляют 50—63% массы Р. и образуют её структурный каркас. Каждый из белков Р. представлен в ней одной молекулой, т. е. на одну Р. приходится неск. десятков разных белков (ок. 55 для Р. прокариот и ок. 100 для Р. эукариот). Большинство белков специфически связано с определ. участками рРНК. Нек-рые белки — т. н. факторы инициации (начала), элонгации (продолжения) и терминации (окончания) — входят в состав Р. только во время биосинтеза белка. В отсутствие биосинтеза белка субчастицы Р. находятся в динамич. равновесии с целыми Р. При начале трансляции с малой субчастицей связываются иРНК, формилметионил-тРНК и факторы инициации; затем этот комплекс присоединяется к большой субчастице. Связь оказывается очень прочной и исчезает только после терминации. Ассоциация выделенных субчастиц Р. осуществляется только при наличии двухвалентных катионов, в физиол. условиях в ней участвует Mg2+. P. имеет специфич. места для присоединения аминоацил-тРНК, пептидил-тРНК, места образования пептидной связи и гидролиза гуанозинтрифосфата, что обеспечивает постепенное скольжение Р. вдоль молекулы иРНК при синтезе полипептидной цепи. Одну молекулу иРНК могут одновременно транслировать неск. Р., образуя комплекс — полирибосому (полисому). Кол-во полирибосом в клетке указывает на интенсивность биосинтеза белка. В эукариотных клетках часть Р. связана спец. белками большой субчастицы с мембранами эндоплазматич. сети. Эти Р. синтезируют в осн. белки, к-рые поступают в комплекс Гольджи и секретируются клеткой. Р; расположенные в гиалоплазме, синтезируют белки для собств. нужд клетки. У эукариот Р. образуются в ядрышке. На ядрышковой ДНК синтезируются предшественники рРНК, к-рые покрываются поступающими из цитоплазмы рибосомальными белками, расщепляются до нужных размеров и формируют рибосомные субчастицы, к-рые выходят в цитоплазму. Полностью сформированных Р. в ядре нет. Осн. массу клеточной РНК составляет рРНК. Она обусловливает базофильную окраску ядрышка и участков эргастоплазмы (напр., Ниссля вещества в нейронах).

 Трансляция Поток информации в виде мРНК и поток материала в виде аминоацил-тРНК поступают в рибосомы , которые являются молекулярными машинами, осуществляющими перевод, или трансляцию, генетической информации с языка нуклеотидной последовательности мРНК на язык аминокислотной последовательности синтезируемой полипептидной цепи белка. Каждая рибосома последовательно сканирует цепь мРНК (движется вдоль нее от одного конца к другому) и соответственно выбирает из среды те аминоацил- тРНК, которые соответствуют (комплементарны) триплетным комбинациям нуклеотидов, находящимся в данный момент в рибосоме. Таким образом, движение рибосомы вдоль мРНК задает строгий временной порядок вхождения в рибосому разных аминоацил-тРНК в соответствии с порядком расположения кодирующих нуклеотидных комбинаций (кодонов) вдоль мРНК. Аминокислотный остаток выбранной аминоацил-тРНК каждый раз ковалентно присоединяется рибосомой к растущей полипептидной цепи, а деацилированная тРНК освобождается из рибосомы в раствор. Так последовательно остаток за остатком строится полипептидная цепь.

Билет 11 1.Олигосахариды — это олигомеры, состоящие из нескольких (не более 20) мономеров — моносахаридов, в отличие от полисахаридов, состоящих из десятков, сотен или тысяч моносахаридов; - соединения, построенные из нескольких остатков моносахаридов (от 2 до 10), связанных между собой гликозидной связью

В состав олигосахаридов могут входить остатки к.-л. одного моносахарида (гомоолигосахариды) или разных моносахаридов (гете-роолигосахариды). Каждый моносахаридный остаток может находиться в одной из четырех возможных циклич. форм ( -и  -фураноза,  - и  -пираноза; см. Моносахариды)и соединяться гликозидной связью с любой гидроксильной группой соседнего остатка (включая полуацетальный гидроксил). Отсюда следует, что даже из двух одинаковых гексоз можно построить 30, а из двух разных гексоз-56 изомерных диса-харидов; три разные гексозы теоретически дают 4896 изомерных трисахаридов; с ростом степени полимеризации число возможных изомеров быстро достигает астрономич. величин.

Если в молекуле олигосахарида все гликозидные связи образованы полуацетальным гидроксилом одного и спиртовым гидро-ксилом другого моносахаридного остатка, в конце цепи остается один незамещенный полуацетальный гидроксил, за счет к-рого олигосахарид проявляет св-ва карбонильных соед., характерные для моносахаридов (р-ции окисления и восстановления, мутаротацию и др.); такие олигосахариды наз. восстанавливающими (редуцирующими). Если же один из моносахаридных остатков в молекуле олигосахарида связан гликозидной связью с полуацетальным гидроксилом другого моносахарида, такие олигосахариды не содержат полуацетальногогидроксила и наз. невосстанавливающими (нередуцирующими). Олигосахариды, в к-рых к спиртовым гидроксилам каждого моносахаридного остатка присоединено не более одного соседнего остатка, наз. линейными (неразветвленными); присоединение двух и более моносахаридов к спиртовым гидроксилам одного и того же моносахаридного остатка приводит к разветвлению олигосахаридов. Т. обр., уже трисахариды могут иметь разветвленную структуру. Моносахаридные остатки, расположенные на концах углеводных цепей, наз. концевыми (терминальными). В восстанавливающих олигосахаридах различают концевой восстанавливающий моносахарид (он м. б. только один) и концевые невосстанавливающие моносахариды (их на единицу больше, чем точек разветвлений).

Строгая номенклатура олигосахаридов весьма громоздка. Название олигосахарида образуется по типу О-замещенных производных моносаха-ридов, исходя из названия восстанавливающего звена с указанием всех имеющихся заместителей; для невосстанавливающих олигосахаридов номенклатура аналогична номенклатуре гликози-дов. В названиях линейных олигосахаридов часто применяется последовательное перечисление моносахаридных остатков с указанием типа связи между ними. Весьма употребительны тривиальные названия олигосахаридов, обычно связанные с источником получения в-ва, и способы сокращенной записи структур, в к-рых моносахаридные остатки обозначаются тремя буквами, абс. конфигурации - буквами D или L, размер цикла - буквами f (фураноза) или р (пираноза), конфигурации гликозидных центров-буквами   или  ; цифры в скобках обозначают положения гидроксильных групп, участвующих в межмоно-мерной связи; направление гликозидной связи указывается стрелкой (знак ~ обозначает, что моносахаридможет иметь   - или  -конфигурацию). Примеры олигосахаридов: невосстанавливающий дисахарид  -трегалоза ( -D-глюкопиранозил- -D-глюкопиранозид; ф-ла Г), восстанавливающие дисахариды лактоза (4-О- -D-галактопиранозил-D-глюкоза; II) имальтоза, или солодовый сахар (4-О- -D-глюкопиранозил-D-глюкоза; III), разветвленный гетеротрисахарид солатриоза (2-О- -L-рамнопиранозил-3-О- -D-глюкопиранозил-D-га-лактоза; IV), линейный гомотрисахарид мальтотриоза [О- -D-глюкопиранозил-(1  4)-О- -D-глюкопиранозил-(1    4)-D-глюкоза; V].

Главным источником получения разнообразных олигосахаридов служат р-ции частичного (химического или ферментативного) расщепления прир. полисахаридовгликолипидов и гликопро-теинов. Однако существует неск. групп олигосахаридов, встречающихся в природе в своб. состоянии. Группа сахарозы широко представлена в растениях, где выполняет роль легкомобили-зуемого энергетич. резерва. Кроме сахарозы в эту группу входят олигосахариды, образовавшиеся путем гликозилирования молекулы сахарозы остатками D-фруктозы (Fru), D-глюкозы (Glc) или D-галактозы (Gal), а также в результате последующего частичного гидролиза этих высших олигосахаридов.

Олигосахариды группы лактозы содержатся в молоке млекопитающих; известно неск. десятков олигосахаридов этой группы, к-рые представляют собой продукты гликозилирования молекулы лактозы остатками L-фукозы (Fuc), N-ацетил-D-глюкозамина (GlcNAc), D-галактозы, N-ацетилнейраминовой к-ты (NeuNAc; все сахара в пиранозной форме), напр

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]