
- •Белорусский Государственный Университет Факультет радиофизики и электроники механика
- •1.Кинематика материальной точки.
- •1. 1. Определение положения точки в пространстве.
- •1.2.Вектор перемещения.
- •1.2. Вектор скорости.
- •1.3.Вектор ускорения.
- •2. Кинематика твердого тела.
- •2.1. Число степеней свободы .
- •2.2. Поступательное движение твёрдого тела.
- •2.3.Вращательное движение тел .
- •Движение отдельных точек вращающегося твердого тела.
- •2.5.Плоское движение твердого тела.
- •2.6. Скорость отдельных точек тела при плоском движении.
- •3. Задачи кинематики.
- •3.1. Первая задача кинематики.
- •3.2. Вторая (основная) задача кинематики
- •4.1. Динамика материальной точки.
- •4.1. Сила. Определения:
- •4.2. Сложение сил и разложение силы на составляющие.
- •4.3. Проекции силы на плоскость и ось.
- •4.4. Статическое и динамическое проявление сил.
- •4.8. Принцип независимости действия сил.
- •4.9. Момент силы относительно произвольного центра.
- •4.10. Момент силы относительно произвольной оси.
- •4.11. Момент силы оТносительно координатной оси.
- •4.12. Момент силы оТносительно центра и координатных осей.
- •2. Основной закон динамики. Уравнение моментов для тела движущего по окружности
- •4.14. Уравнение моментов относительно произвольного центра.
- •4.15. Уравнение моментов относительно координатных осей.
- •4 .16. Движение тел в поле центральных сил.
- •Считая массу планеты постоянной, можно далее записать:
- •5. Основные законы динамики систем материальных точек.
- •5.1. Система материальных точек.
- •5.2. Основной закон динамики системы материальных точек.
- •5.3. Уравнения моментов для системы материальных точек относительно произвольного центра, произвольной оси.
- •6. Динамика тел переменной массы.
- •6.1. Основной закон динамики тела переменной массы (уравнение Мещерского) для тела с убывающей массой.
- •6.2. Основной закон динамики для тела с возрастающей массой.
- •6.3. Первое соотношение Циолковского.
- •6.4. Второе соотношение Циолковского.
- •6.5. Линейный режим работы ракетного двигателя.
- •6.6. Показательный режим работы ракетного двигателя.
- •6.7. Вертикальный старт одноступенчатой ракеты.
- •7.Инерциальные системы отсчета.
- •7.1.Относительность механического движения.
- •7.2. Галилеевы преобразования координат и закон сложения скоростей.
- •7.3. Принцип относительности Галилея, его физический смысл.
- •8. Основы специальной теории относительности.
- •8.1. Постулаты Эйнштейна.
- •8.2. "Радиолокационный" метод (метод коэффициента "k ").
- •8.3. "Замедление" хода времени.
- •8.4. Относительная скорость.
- •8.5. Сравнение поперечных размеров тел.
- •8.6. Эффект "сокращения" длин.
- •8.7. Преобразования Лоренца.
- •8.8. Интервал. Инвариантность интервала.
- •8.9. Преобразования компонентов вектора скорости.
- •8.10. Релятивистская масса, релятивистский импульс.
- •8.11. Релятивистское уравнение движения.
- •9. Неинерциальные системы отсчёта.
- •9.1. Силы инерции.
- •9.2. Силы инерции во вращающихся системах отсчета.
- •9.3. Силы инерции Кориолиса.
- •9.4. Зависимость веса тел от географической широты местности.
- •10. Силы трения. Сухое трение.
- •10.1. Силы трения скольжения.
- •10.2. Силы трения качения.
- •10.3. Вязкое трение
- •10.4. Движение тел в сопротивляющейся среде.
- •11. Упругость.
- •11.1 Упругие силы.
- •11.2. Продольное сжатие и растяжение. Закон Гука.
- •11.3 Деформация сдвига.
- •11.4. Деформация кручения.
- •12. Силы тяготения.
- •Закон всемирного тяготения.
- •12.5.2. Взаимодействие точки с тонким сферическим слоем.
- •12.5.3. Взаимодействие между точечной массой и однородным шаром.
- •13. Работа и энергия.
- •13.1. Работа силы, работа суммы сил.
- •Частные случаи вычисления работы.
- •Работа силы тяжести.
- •Работа упругих сил.
- •Работа и кинетическая энергия.
- •Работа центральных сил.
- •13.5 Потенциальная энергия.
- •13.6. Нормировка потенциальной энергии, закон сохранения энергии.
- •14. Динамика твёрдого тела.
- •Момент инерции твёрдого тела.
- •Кинетическая энергия твёрдого тела для различных типов движения.
- •1.Поступательное движение
- •2.Вращательное движение
- •3.Плоское движение тела
- •Свободные оси вращения
- •14.7. Гироскопы.
- •14.8. Прецессия волчка.
- •Гидростатика.
- •Давление покоящейся жидкости.
- •15.2.Уравнение гидростатики эйлера
- •15.3.Уравнение поверхности уровня
- •15.4.Закон паскаля
- •15.5.Сообщающиеся сосуды
- •15.5.1.Сообщающиеся сосуды заполнены однородной жидкостью
- •15.5.2.Сообщающиеся сосуды заполненные неоднородной жидкостью
- •15.5.3.Закон архимеда Тело погружено в жидкость (рис. 73).
- •На его поверхность со стороны жидкости действуют силы давления, выделим в теле объем малого сечения, ось которого вертикальна. На верхнюю и нижнюю грани этого объема действуют силы давления:
- •15.6. Механика движущихся жидкостей. Введение
- •Определения
- •15.7.Расход жидкости
- •15.8.Уравнение неразрывности струи жидкости
- •15.9.Уравнение бернулли
- •15.10.Примеры применения закона бернулли
- •15.10.1.Формула торичелли
- •15.10.2Трубка пито
- •15.11.Реакция струи жидкости
- •15.12.Ламинарнре и турбулентное течение жидкости. Число рейнольдса.
- •15.13. Формула пуазейля
15.5.3.Закон архимеда Тело погружено в жидкость (рис. 73).
Рис.73.
На его поверхность со стороны жидкости действуют силы давления, выделим в теле объем малого сечения, ось которого вертикальна. На верхнюю и нижнюю грани этого объема действуют силы давления:
Равнодействующая сил давления в проекции на вертикальную ось равна:
где: dS - проекция dS1 (или dS2) на горизонтальную плоскость. Разность давлений по закону Паскаля равна
где: dZ - разность уровней центров граней выделенного объема. Тогда равнодействующая сил давления равна
где dV - величина выделенного объема.
Вертикальная проекция сил давления, действующих на всю смоченную поверхность тела, может быть получена путем интегрирования предыдущего выражения:
т.е. сила, действующая со стороны жидкости на погруженное в нее тело по величине равна весу жидкости, вытесненной телом.
Формулировка закона: на тело, погруженное в жидкость действует выталкивающая сила, равная весу жидкости в объеме, вытесненном телом, и приложенная в той точке смоченной поверхности тела, в которой вертикаль, проведенная через центр масс вытесненной жидкости, пересекает эту поверхность.
Существенным в формулировке закона Архимеда является правильное указание точки приложения выталкивающей силы. Действительно, поскольку сила Архимеда обусловлена действием распределенных по поверхности сил давления со стороны жидкости, то и равнодействующая сил давления должна быть приложена к смоченной поверхности тела (но не к центру масс вытесненной жидкости, как это часто утверждается). Кроме того, наличие в плавающем теле деформаций можно объяснить только при таком рассмотрении силы Архимеда.
15.6. Механика движущихся жидкостей. Введение
При изучении движения жидкостей и газов применяются различные способы описания движения. Наиболее часто используется метод, предложенный Эйлером. Но Эйлеру в области пространства, занятой движущейся жидкостью, выделяется точка, в которой определяются параметры движения различных жидких частиц, проходящих через эту точку в различные моменты времени.
Основной задачей механики движущейся жидкости является нахождение распределений скорости, плотности и давления по потоку жидкости:
Для установившегося потока, когда параметры потока в фиксированной точке его не изменяются с течением времени, задача сводится к нахождению распределений:
Ещё более упрощается задача для идеальной жидкости. В случае установившегося потока идеальной жидкости необходимо найти распределения:
Определения
1.Линией тока называют кривую, в каждой точке которой касательные к ней совпадают по направлению с вектором скорости в данный момент времени.
2.Поверхностью тока называют поверхность, образованную линиями в тока.
3.Поверхность тока, проходящую через замкнутый контур, называют трубкой тока.
4.Часть потока жидкости, ограниченную трубкой тока, называют струёй жидкости.
Пpи установившемся потоке жидкость внутри трубки тока а движется как в трубке с твердыми стенками.
15.7.Расход жидкости
Различают объемный, массовый и весовой расходы жидкости. Объемным расходом называют объем жидкости, протекающий в единицу времени через заданную площадку. Для площадки элементарно малой площади dS объемный расход равен:
Аналогично массовый расход определяется величиной протекающей через площадку массы жидкости в единицу времени:
Вес жидкости, протекающей через площадку в единицу времени, называют весовым расходов:
В этих выражениях:
- скорость жидкости,
- плотность
жидкости,
- удельный вес жидкости.