- •Белорусский Государственный Университет Факультет радиофизики и электроники механика
- •1.Кинематика материальной точки.
- •1. 1. Определение положения точки в пространстве.
- •1.2.Вектор перемещения.
- •1.2. Вектор скорости.
- •1.3.Вектор ускорения.
- •2. Кинематика твердого тела.
- •2.1. Число степеней свободы .
- •2.2. Поступательное движение твёрдого тела.
- •2.3.Вращательное движение тел .
- •Движение отдельных точек вращающегося твердого тела.
- •2.5.Плоское движение твердого тела.
- •2.6. Скорость отдельных точек тела при плоском движении.
- •3. Задачи кинематики.
- •3.1. Первая задача кинематики.
- •3.2. Вторая (основная) задача кинематики
- •4.1. Динамика материальной точки.
- •4.1. Сила. Определения:
- •4.2. Сложение сил и разложение силы на составляющие.
- •4.3. Проекции силы на плоскость и ось.
- •4.4. Статическое и динамическое проявление сил.
- •4.8. Принцип независимости действия сил.
- •4.9. Момент силы относительно произвольного центра.
- •4.10. Момент силы относительно произвольной оси.
- •4.11. Момент силы оТносительно координатной оси.
- •4.12. Момент силы оТносительно центра и координатных осей.
- •2. Основной закон динамики. Уравнение моментов для тела движущего по окружности
- •4.14. Уравнение моментов относительно произвольного центра.
- •4.15. Уравнение моментов относительно координатных осей.
- •4 .16. Движение тел в поле центральных сил.
- •Считая массу планеты постоянной, можно далее записать:
- •5. Основные законы динамики систем материальных точек.
- •5.1. Система материальных точек.
- •5.2. Основной закон динамики системы материальных точек.
- •5.3. Уравнения моментов для системы материальных точек относительно произвольного центра, произвольной оси.
- •6. Динамика тел переменной массы.
- •6.1. Основной закон динамики тела переменной массы (уравнение Мещерского) для тела с убывающей массой.
- •6.2. Основной закон динамики для тела с возрастающей массой.
- •6.3. Первое соотношение Циолковского.
- •6.4. Второе соотношение Циолковского.
- •6.5. Линейный режим работы ракетного двигателя.
- •6.6. Показательный режим работы ракетного двигателя.
- •6.7. Вертикальный старт одноступенчатой ракеты.
- •7.Инерциальные системы отсчета.
- •7.1.Относительность механического движения.
- •7.2. Галилеевы преобразования координат и закон сложения скоростей.
- •7.3. Принцип относительности Галилея, его физический смысл.
- •8. Основы специальной теории относительности.
- •8.1. Постулаты Эйнштейна.
- •8.2. "Радиолокационный" метод (метод коэффициента "k ").
- •8.3. "Замедление" хода времени.
- •8.4. Относительная скорость.
- •8.5. Сравнение поперечных размеров тел.
- •8.6. Эффект "сокращения" длин.
- •8.7. Преобразования Лоренца.
- •8.8. Интервал. Инвариантность интервала.
- •8.9. Преобразования компонентов вектора скорости.
- •8.10. Релятивистская масса, релятивистский импульс.
- •8.11. Релятивистское уравнение движения.
- •9. Неинерциальные системы отсчёта.
- •9.1. Силы инерции.
- •9.2. Силы инерции во вращающихся системах отсчета.
- •9.3. Силы инерции Кориолиса.
- •9.4. Зависимость веса тел от географической широты местности.
- •10. Силы трения. Сухое трение.
- •10.1. Силы трения скольжения.
- •10.2. Силы трения качения.
- •10.3. Вязкое трение
- •10.4. Движение тел в сопротивляющейся среде.
- •11. Упругость.
- •11.1 Упругие силы.
- •11.2. Продольное сжатие и растяжение. Закон Гука.
- •11.3 Деформация сдвига.
- •11.4. Деформация кручения.
- •12. Силы тяготения.
- •Закон всемирного тяготения.
- •12.5.2. Взаимодействие точки с тонким сферическим слоем.
- •12.5.3. Взаимодействие между точечной массой и однородным шаром.
- •13. Работа и энергия.
- •13.1. Работа силы, работа суммы сил.
- •Частные случаи вычисления работы.
- •Работа силы тяжести.
- •Работа упругих сил.
- •Работа и кинетическая энергия.
- •Работа центральных сил.
- •13.5 Потенциальная энергия.
- •13.6. Нормировка потенциальной энергии, закон сохранения энергии.
- •14. Динамика твёрдого тела.
- •Момент инерции твёрдого тела.
- •Кинетическая энергия твёрдого тела для различных типов движения.
- •1.Поступательное движение
- •2.Вращательное движение
- •3.Плоское движение тела
- •Свободные оси вращения
- •14.7. Гироскопы.
- •14.8. Прецессия волчка.
- •Гидростатика.
- •Давление покоящейся жидкости.
- •15.2.Уравнение гидростатики эйлера
- •15.3.Уравнение поверхности уровня
- •15.4.Закон паскаля
- •15.5.Сообщающиеся сосуды
- •15.5.1.Сообщающиеся сосуды заполнены однородной жидкостью
- •15.5.2.Сообщающиеся сосуды заполненные неоднородной жидкостью
- •15.5.3.Закон архимеда Тело погружено в жидкость (рис. 73).
- •На его поверхность со стороны жидкости действуют силы давления, выделим в теле объем малого сечения, ось которого вертикальна. На верхнюю и нижнюю грани этого объема действуют силы давления:
- •15.6. Механика движущихся жидкостей. Введение
- •Определения
- •15.7.Расход жидкости
- •15.8.Уравнение неразрывности струи жидкости
- •15.9.Уравнение бернулли
- •15.10.Примеры применения закона бернулли
- •15.10.1.Формула торичелли
- •15.10.2Трубка пито
- •15.11.Реакция струи жидкости
- •15.12.Ламинарнре и турбулентное течение жидкости. Число рейнольдса.
- •15.13. Формула пуазейля
10.2. Силы трения качения.
Трение качения возникает при качении одного твердого тела по поверхности другого. При попытке сдвинуть тело по поверхности другого в плоскости соприкосновения возникает
с
ила
препятствующая этому (рис. 43).
Положим, что оба тела являются абсолютно твердыми, недеформируемыми, В этом случае нормальная составляющая реакции проходит через точку касания и центр масс катка (считаем его однородным симметричным телом, например, цилиндром). При такой модели любая по величине сила может вызвать качение катка, т.е. сопротивление движению.
не
возникает. Более того, сила
должна вызывать угловое ускорение при
любой по величине силе
,
что противоречит опыту.
Сопротивление качению может возникать в том случае, если нормальная реакция смещается относительно вертикального диаметра катка в сторону движения. Это происходит в том случае, если давление катка на поверхность будет не в точке, а по участку поверхности, а интенсивность давления будет больше впереди вертикального диаметра катка, как показано на рис. 44.
Рис.44
Следовательно, поверхность должна деформироваться, причем деформации будут несимметричными относительно вертикального диаметра.
Положим,
что сила
вызывает равномерное качение катка,
т.е.
Откуда
(190)
Здесь
(коэффициент трения качения) является
размерной величиной. Смысл его- ''плечо''
нормальной составляющей реакции
поверхности.
10.3. Вязкое трение
Вязкое трение возникает при относительном движении слоёв жидкости или газа. Основные законы вязкого трения получены опытным путём.
Ньютон
установил, что если под действием силы
площадка
площади
движется равномерно со скоростью
относительно площадки
(рис.45),
Рис.45
На подвижную площадку действуют силы сопротивления движению (силы вязкого трения):
(191)
где
- расстояние между площадками (слоями),
-
коэффициент вязкого трения определяемая
свойствами вязкой среды, заполняющей
промежуток между площадками.
При движении тел в вязкой среде на них действуют силы сопротивления движению.
Стокс получил выражение для этих сил. При малых скоростях.
(192)
где:
-
стоксова сила сопративления,
-
плотность среды,
-
скорость тела,
-коэффициент,
определяемый геометрией тела,
-
площадь проекции тела на плоскость,
перпендикулярную направлению движения.
10.4. Движение тел в сопротивляющейся среде.
При достаточно больших скоростях тел (или если форма тела является плохо обтекаемой) силы Стокса становятся пропорциональны квадрату скорсти:
(193)
Положим, что тело начинает падать под действием силы тяжести в сопротивляющейся среде. Пренебрегая силой Архимеда, запишем:
(194)
С
течением времени скорость тела возрастает,
возрастает и сила Стокса. Наконец, силы
тяжести и Стокса уравновешиваются,
после чего начинается равномерное
движение тела с установившейся скоростью
.
Определим зависимость скорости от
проходимого телом пути и значение
установившейся скорости. Для этого
сначала преобразуем (194):
Обозначим:
Тогда:
Или:
(195)
Интегрируя (195), получим:
(196)
Константу интегрирования находим из начальных условий (x=0 и =0):
(197)
Подставив (197) в (196) получим
Или:
Откуда:
(198)
Через
достаточно большой промежуток времени
(
)
скорость тела перестаёт изменяться.
Следовательно, значение установившейся
скорости равно
(199)
(178) и (179) и дают искомое решение поставленной задачи.
