
- •Белорусский Государственный Университет Факультет радиофизики и электроники механика
- •1.Кинематика материальной точки.
- •1. 1. Определение положения точки в пространстве.
- •1.2.Вектор перемещения.
- •1.2. Вектор скорости.
- •1.3.Вектор ускорения.
- •2. Кинематика твердого тела.
- •2.1. Число степеней свободы .
- •2.2. Поступательное движение твёрдого тела.
- •2.3.Вращательное движение тел .
- •Движение отдельных точек вращающегося твердого тела.
- •2.5.Плоское движение твердого тела.
- •2.6. Скорость отдельных точек тела при плоском движении.
- •3. Задачи кинематики.
- •3.1. Первая задача кинематики.
- •3.2. Вторая (основная) задача кинематики
- •4.1. Динамика материальной точки.
- •4.1. Сила. Определения:
- •4.2. Сложение сил и разложение силы на составляющие.
- •4.3. Проекции силы на плоскость и ось.
- •4.4. Статическое и динамическое проявление сил.
- •4.8. Принцип независимости действия сил.
- •4.9. Момент силы относительно произвольного центра.
- •4.10. Момент силы относительно произвольной оси.
- •4.11. Момент силы оТносительно координатной оси.
- •4.12. Момент силы оТносительно центра и координатных осей.
- •2. Основной закон динамики. Уравнение моментов для тела движущего по окружности
- •4.14. Уравнение моментов относительно произвольного центра.
- •4.15. Уравнение моментов относительно координатных осей.
- •4 .16. Движение тел в поле центральных сил.
- •Считая массу планеты постоянной, можно далее записать:
- •5. Основные законы динамики систем материальных точек.
- •5.1. Система материальных точек.
- •5.2. Основной закон динамики системы материальных точек.
- •5.3. Уравнения моментов для системы материальных точек относительно произвольного центра, произвольной оси.
- •6. Динамика тел переменной массы.
- •6.1. Основной закон динамики тела переменной массы (уравнение Мещерского) для тела с убывающей массой.
- •6.2. Основной закон динамики для тела с возрастающей массой.
- •6.3. Первое соотношение Циолковского.
- •6.4. Второе соотношение Циолковского.
- •6.5. Линейный режим работы ракетного двигателя.
- •6.6. Показательный режим работы ракетного двигателя.
- •6.7. Вертикальный старт одноступенчатой ракеты.
- •7.Инерциальные системы отсчета.
- •7.1.Относительность механического движения.
- •7.2. Галилеевы преобразования координат и закон сложения скоростей.
- •7.3. Принцип относительности Галилея, его физический смысл.
- •8. Основы специальной теории относительности.
- •8.1. Постулаты Эйнштейна.
- •8.2. "Радиолокационный" метод (метод коэффициента "k ").
- •8.3. "Замедление" хода времени.
- •8.4. Относительная скорость.
- •8.5. Сравнение поперечных размеров тел.
- •8.6. Эффект "сокращения" длин.
- •8.7. Преобразования Лоренца.
- •8.8. Интервал. Инвариантность интервала.
- •8.9. Преобразования компонентов вектора скорости.
- •8.10. Релятивистская масса, релятивистский импульс.
- •8.11. Релятивистское уравнение движения.
- •9. Неинерциальные системы отсчёта.
- •9.1. Силы инерции.
- •9.2. Силы инерции во вращающихся системах отсчета.
- •9.3. Силы инерции Кориолиса.
- •9.4. Зависимость веса тел от географической широты местности.
- •10. Силы трения. Сухое трение.
- •10.1. Силы трения скольжения.
- •10.2. Силы трения качения.
- •10.3. Вязкое трение
- •10.4. Движение тел в сопротивляющейся среде.
- •11. Упругость.
- •11.1 Упругие силы.
- •11.2. Продольное сжатие и растяжение. Закон Гука.
- •11.3 Деформация сдвига.
- •11.4. Деформация кручения.
- •12. Силы тяготения.
- •Закон всемирного тяготения.
- •12.5.2. Взаимодействие точки с тонким сферическим слоем.
- •12.5.3. Взаимодействие между точечной массой и однородным шаром.
- •13. Работа и энергия.
- •13.1. Работа силы, работа суммы сил.
- •Частные случаи вычисления работы.
- •Работа силы тяжести.
- •Работа упругих сил.
- •Работа и кинетическая энергия.
- •Работа центральных сил.
- •13.5 Потенциальная энергия.
- •13.6. Нормировка потенциальной энергии, закон сохранения энергии.
- •14. Динамика твёрдого тела.
- •Момент инерции твёрдого тела.
- •Кинетическая энергия твёрдого тела для различных типов движения.
- •1.Поступательное движение
- •2.Вращательное движение
- •3.Плоское движение тела
- •Свободные оси вращения
- •14.7. Гироскопы.
- •14.8. Прецессия волчка.
- •Гидростатика.
- •Давление покоящейся жидкости.
- •15.2.Уравнение гидростатики эйлера
- •15.3.Уравнение поверхности уровня
- •15.4.Закон паскаля
- •15.5.Сообщающиеся сосуды
- •15.5.1.Сообщающиеся сосуды заполнены однородной жидкостью
- •15.5.2.Сообщающиеся сосуды заполненные неоднородной жидкостью
- •15.5.3.Закон архимеда Тело погружено в жидкость (рис. 73).
- •На его поверхность со стороны жидкости действуют силы давления, выделим в теле объем малого сечения, ось которого вертикальна. На верхнюю и нижнюю грани этого объема действуют силы давления:
- •15.6. Механика движущихся жидкостей. Введение
- •Определения
- •15.7.Расход жидкости
- •15.8.Уравнение неразрывности струи жидкости
- •15.9.Уравнение бернулли
- •15.10.Примеры применения закона бернулли
- •15.10.1.Формула торичелли
- •15.10.2Трубка пито
- •15.11.Реакция струи жидкости
- •15.12.Ламинарнре и турбулентное течение жидкости. Число рейнольдса.
- •15.13. Формула пуазейля
1.2.Вектор перемещения.
Рис. 2
Для определения перемещения точки в пространстве вводят вектор перемещения.
Н
апример,
за промежуток времени t
точка перемещается из положения 1 в
положение 2 (рис. 2), определяемые векторным
способом указанием радиус-векторов
и
; вектором перемещения называют
вектор, проведенный из начального
положения 1 в конечное 2 перемещаемого
тела. Из векторного треугольника видно,
что вектор перемещения равен приращению
радиус-вектора точки.
Наряду с изменением радиус-вектора точки происходит изменение ее координат, т.е. перемещение точки вдоль отдельных координатных направлений. Из рис.3 видно, что
Вектор
перемещения за конечный промежуток
времени в общем случае не совпадает с
направлением движения (направлением
касательной к траектории движения).
Очевидно, что эти направления будут
совпадать в общем случае движения только
для бесконечно малых перемещений точки
.
1.2. Вектор скорости.
Вектором скорости называют вектор, определяющий быстроту и направление движения.
В
ектором
средней скорости называют отношение
вектора перемещения к промежутку
времени, за который это перемещение
происходит:
Так как в произвольном случае движения вектор перемещения за конечный промежуток времени не определяет точно направление движения, это не может сделать и вектор средней скорости. Следовательно, необходимо рассматривать перемещения за бесконечно малые промежутки времени.
Вектором истинной (мгновенной) скорости
называют предел, к которому стремится
значение вектора средней скорости при
бесконечном убывании промежутка времени:
Так как при движении тела в общем случае изменяются все три его координаты, часто бывает удобным рассматривать скорость движения точки вдоль отдельных координатных направлений (компоненты или составляющие вектора скорости). Компоненты средней скорости равны:
Компоненты же мгновенной скорости определяются как
Вектор скорости с его компонентами связан такими же по виду соотношениями, как радиус-вектор с
координатами точек:
1.3.Вектор ускорения.
Вектором ускорения называют вектор, определяющий быстроту и направление изменения вектора скорости. Аналогично определениям для вектора скорости вводятся понятия среднего и мгновенного
у
скорения:
При движении точки по произвольной траектории вектор изменения скорости Δ и, следовательно, вектор ускорения направлены в сторону вогнутости траектории независимо от того, увеличивается или уменьшается величина скорости (рис. 4, 5):
Рис. 4. Ускоренное движение Рис. 5. Замедленное движение
Как видно из рисунков, в обоих случаях вектор d направлен в сторону вогнутости траектории. При ускоренном движении он отклоняется в сторону движения, при замедленном - в противоположную
Для определения мгновенного ускорения надо рассматривать бесконечно малые перемещения, т.е. векторы скорости 1 и 2 в соседних точках траектории. Поэтому вектор ускорения лежит в плоскости, содержащей касательную к траектории в данной точке и прямую, параллельную касательной в соседней точке траектории. Такая плоскость называется соприкасающейся. Поэтому наряду с представлением вектора ускорения компонентами
можно рассматривать составляющие вектора в соприкасающейся плоскости (т.е. только две компоненты). Для определения этих составляющих в любой точке траектории проводят соприкасавшуюся плоскость и в ней две оси - нормальную On. в сторону вогнутости траектории и касательную Ot по касательной к траектории. Изменение скорости и, соответственно, ускорение можно рассматривать в проекциях на эти оси (рис. 6).
Двигаясь вдоль траектории, за промежуток времени t точка проходит путь S скорость ее изменяется от до 1, при этом 1 составляет угол (альфа) с осью Ot. По определению мгновенного ускорения:
Рис.
6
П
реобразуем
выражение предела, умножив и разделив
его на
и S:
О
тметим,
что при t=0
бесконечно убывает и пройденный путь,
и угол (S=0,
a=0).
При этом условии значения пределов
равны:
Предел же называется кривизной траектории К. Кривизна траектории обратно
пропорциональна радиусу кривизны траектории:
С
учетом этих замечаний выражение для
нормальной составляющей вектора
ускорения принимает вид
Для выяснения физического смысла ускорения рассмотрим два частных случая движения.
Р
авномерное
криволинейное движение (V=const, k<>0). В
этом случае, как видно из (14) и (16),
Н
еравномерное
прямолинейное движение (V<>соnst , K=0).
При таком движении
Следовательно, касательная составляющая ускорения определяет изменение вектора скорости по величине, а нормальная - по направлению.