Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Pozharnaya bezopasnost. Enciklopedia 2007

.pdf
Скачиваний:
177
Добавлен:
29.03.2019
Размер:
7.77 Mб
Скачать

Для практического применения допускаются С. о., прошедшие сертификацию в обл. пожарной безопасности и отвечающие нормативным требованиям пожарной безопасности.

Лит.: Огнезащита материалов, изделий и строительных конструкций: Сборник. М., 1999.

СТАДИИ СВОБОДНОГО РАЗВИТИЯ ПОЖАРА. Каждый пожар соответствующего класса

(согласно принятой классификации пожаров) по времени проходит 4 осн. стадии: начальную; развивающуюся; развитую; затухающую.

Начальная стадия пожара включает в себя время от возникновения горения до полного охвата пламенем поверхности пожарной нагрузки (общей вспышки). Продолжительность начальной стадии пожара зависит от вида, расположения и количества временной пожарной нагрузки, конструктивнопланировочных характеристик помещения и может меняться в широких пределах. Отличительной особенностью начальной стадии пожара является наличие одновременно тепломассовыделения от горения и термического разложения материала пожарной нагрузки с распространением огня по её поверхности. Эта стадия важна для оценки характера последующего развития пожара, разработки мероприятий по обеспечению безопасной эвакуации людей при пожаре, обнаружения и тушения пожара, а в ряде случа-

ев — для определения огнестойкости строительных конструкций.

Развивающаяся стадия пожара включает в себя период от полного охвата пламенем поверхности пожарной нагрузки до достижения макс. скорости выгорания материала пожарной нагрузки. Эта стадия характеризуется увеличением скорости тепломассовыделения от очага пожара и интенсивным изменением температуры объёма очага пожара. На этой стадии окружающая среда пожара и строительные конструкции подвергаются быстро нарастающему интенсивному тепловому и массовому воздействию.

Развитая стадия пожара характеризуется проявлением наивысшей интенсивности всех параметров тушения пожара, которые достигают макс. и практически постоянного значения.

Затухающая стадия пожара начинается с момента уменьшения среднеобъёмной температуры в очаге пожара, практически совпадающего с уменьшением скорости выгорания пожарной нагрузки, и заканчивается моментом достижения начального значения среднеобъёмной температуры в очаге пожара.

Лит.: Молчадский И.С. Пожар в помещении. М., 2005.

СТАНДАРТИЗАЦИЯ В ОБЛАСТИ ПОЖАРНОН БЕЗОПАСНОСТИ - деятельность по уста-

новлению правил и характеристик в целях их добровольного многократного использования, направленная на повышение уровня пожарной безопасности, достижение упорядоченности в сферах производства и обращения продукции и повышение конкурентоспособности продукции, работ или услуг. Целями С. являются: повышение уровня безопасности жизни и здоровья граждан, имущества физических и юридических лиц, гос. и муниципального имущества, объектов с учётом риска возникновения ЧС природного и техногенного характера, повышение уровня экологической безопасности, безопасности жизни и здоровья животных и растений; обеспечение конкурентоспособности и качества продукции (работ, услуг), единства измерений, рационального использования ресурсов, взаимозаменяемости техн. средств (машин и оборудования, их составных частей, комплектующих изделий и материалов), техн. и информационной совместимости, сопоставимости результатов иссл. (испытаний) и измерений, техн. и экон.- статистических данных, проведения анализа характеристик продукции (работ, услуг), исполнения гос. заказов, добровольного подтверждения соответствия продукции (работ, услуг); содействие соблюдению требований технических регламентов; создание систем классификации и кодирования технико-экон. и социальной информации, систем каталогизации продукции (работ, услуг), систем обеспечения качества продукции (работ, услуг), систем поиска и передачи данных, содействие проведению работ по унификации. С. осуществляется в соответствии с принципами: добровольного применения стандартов; максимального учета при разработке стандартов законных интересов заинтересованных лиц; применения международного стандарта как основы разработки национального стандарта, за исключением случаев, если такое применение признано невозможным вследствие несоответствия требований международных стандартов климатическим и географическим особенностям РФ, техн. и (ИЛИ) технологическим особенностям или по иным основаниям, либо РФ в соответствии с установленными процедурами выступала против принятия международного стандарта или отд. его положения; недопустимости создания препятствий производству и обращению продукции, выполнению работ и оказанию услуг в большей степени, чем это минимально необходимо для выполнения целей с.; недопустимости установления в стандартах таких требований, которые противоречат техн. регламентам; обеспечения условий для единообразного применения стандартов. К документам в обл. С., используемым на терр. РФ, относятся: международные, межгос., национальные стандарты; правила С., нормы и рекомендации в обл. С.; применяе-

мые в установленном порядке классификации общерос. классификаторы технико-экон. и социальной информации; стандарты организаций; своды правил. Документы в обл. национальной с. разрабатываются в порядке, установленном ФЗ «О техническом регулировании», нормативными правовыми документами федерального агентства по техн. регулированию и метрологии. В целях организации работ по С. в обл. пожарной безопасности создан Технический комитет 274 «Пожарная безопасность» (ТК 274). Ведение секретариата ТК 274 поручено ФГУ ВНИИПО МЧС России. Деятельность ТК 274 распространяется на след. объекты С.: пожарную безопасность технологических процессов и продукции; пожарную безопасность электротехнических и электронных изделий; технику пожарную, огнетушащие средства;

технические средства пожарной и охранно-пожарной сигнализации.

Лит.: Федеральный закон от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании».

СТАНДАРТНАЯ ТЕМПЕРАТУРА САМОВОСПЛАМЕНЕНИЯ температура самовоспла-

менения, определяемая в условиях спец. (стандартных) испытаний. Значения С. т. с. используются при: определении группы взрывоопасной смеси; выборе типа взрывозащищённого электрооборудования; разработке мероприятий по обеспечению пожаровзрывобезопасности технологических процессов.

В рос. нормативных документах используется термин «Температура самовоспламенения».

Лит. ГОСТ 12.1.044.89. ССБТ. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения.

СТАНЦИЯ ПОЖАРНОЙ СИГНАЛИЗАЦИИ, см. Пожарный приёмно-контрольный прибор.

СТАТИЧЕСКОЕ ЭЛЕКТРИЧЕСТВО совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда (см. Электростатический заряд) на поверхности или в объёме диэлектриков, или на изолированных проводниках. Термин «С. э.» распространяется также на совокупность явлений, обусловленных связанными положительными и отрицательными электростатическими зарядами, и на явления, обусловленные преобразованием разл. видов энергии в энергию электростатического поля. Понятие «С. э.» не следует отождествлять с электростатикой, отражающей взаимодействие неподвижных электрических зарядов. С этим понятием связано развитие электронной и ионной оптики, информационных, космических, оборонных технологий, и т. п.

В обеспечении пожарной безопасности с понятием «С. э.» связаны молниезащита и ЭСИБ. Направление молниезащиты (см. также Молния, Молниезащита) связано с опасными проявлениями С. э. в атмосфере. В зонах грозовой деятельности разряды молний переносят преимущественно отрицательный электростатический заряд к земной поверхности, благодаря чему Земля заряжается отрицательно и существует электростатическое поле спокойной атмосферы примерно 100 В/м у земной поверхности. Направление ЭСИБ связано с опасными проявлениями С. э., обусловленными действием электростатических генераторов в объёмах машин и аппаратов, оборудования, одежды, бытовой обстановки. Опасность взрывов и пожаров от разрядов С. э. следует учитывать при применении струи воды под давлением, при её распылении и применении огнетушителей.

Требования норм, регламентирующих проявления С. э. в обл. охраны труда, жизни и здоровья человека, следует учитывать при разработке техники, технологических процессов, одежды и при тушении пожаров.

. Лит.: Верёвкин В.Н., Смелков Г.И., Черкасов В.Н. Электростатическая искробезопасность и молниезащита. М., 2006.

СТАЦИОНАРНАЯ РОБОТИЗИРОВАННАЯ УСТАНОВКА ПОЖАРОТУШЕНИЯ стацио-

нарное автоматическое средство, смонтированное на неподвижном основании, состоящее из пожарного ствола, имеющего несколько степеней подвижности, и оснащённое системой приводов. В большинстве случаев стационарная роботизированная установка пожаротушения (РУП) имеет программное управление и предназначена для тушения и локализации пожара или охлаждения технологического оборудования и строительных конструкций. В отличие от традиционных автоматических установок пожаротушения РУП позволяет эффективно защищать объекты с изменяемым технологическим процессом. Осн. объекты, на которых целесообразно использовать РУП: резервуары со сжиженными углеводородными газами, ГЖ и ЛВЖ, лесобиржи, склады боеприпасов, энергоёмкие производственные комплексы, машинные залы электростанций, зрительные залы театров, цирков, спортивных комплексов, конференцзалы и т.п. Наряду с тушением пожаров РУП могут выполнять функции, связанные с профилактикой пожара. Напр., применение РУП на складах лесопиломатериалов позволяет организовать в жаркое время года регулярное принудительное орошение складируемых пиломатериалов. С помощью РУП можно

вести борьбу с пожаром и охлаждать стальные конструкции в ангарах, а также регулярно, по команде оператора, орошать стены и несущие покрытия для наведения чистоты в помещениях.

Лит.: Пожарная робототехника: состояние и перспективы использования: обзорная информ. /Л.М. Мешман, В.В. Пиво-

варов, А.В. Гомозов, С.Н. Верещагин. М., 1992.

СТВОЛЬЩИК участник тушения пожара, выполняющий поставленную задачу по подаче из пожарного ствола ОТВ в очаг пожара. С. непосредственно подчиняется командиру отделения, а в исключительных случаях начальнику боевого участка (НБУ). При выполнении поставленной задачи С. при прокладке рукавных линий выбирает кратчайшие, наиболее удобные пути к позициям С, не загромождая путей эвакуации людей и имущества. Обеспечивает их сохранность и защиту от повреждений, в т. ч. путём установки рукавных мостиков и использования рукавных задержек, устанавливает разветвления. Создаёт запас пожарных рукавов для использования на решающем направлении боевых действий. При работе с ручными пожарными стволами С. необходимо: осуществлять первоочередную подачу ОТВ на решающем направлении; обеспечивать подачу ОТВ непосредственно в очаг пожара с соблюдением правил охраны труда; охлаждать материалы, конструкции, оборудование для предотвращения обрушений и (или) ограничения развития горения; не прекращать подачу ОТВ и не оставлять боевую позицию без разрешения ст. начальника; исключать случаи воздействия воды на слой пены или порошка, используемых для прекращения горения; не допускать излишнего пролива воды. Способы подачи ОТВ выбираются с учётом наличия и состояния материальных, культурных и иных ценностей, конструктивных особенностей зданий (сооружений), поведения строительных конструкций, а также обеспечения безопасности личного состава пожарной охраны.

Лит.: Приказ МВД России от 5 июля 1997 г. № 257 «Об утверждении нормативных правовых актов в области организации деятельности государственной противопожарной службы» (с изм. от б мая 2000 г; Повзик Я.С., Клюс П.П., Матвейкин А.М. Пожарная тактика. М., 1990.

СТЕНДЕР, то же, что Пожарная колонка.

СТЕПЕНЬ ОГНЕСТОЙКОСТИ ЗДАНИЯ (СООРУЖЕНИЯ, ПОЖАРНОГО ОТСЕКА) - клас-

сификационная характеристика объекта, определяемая показателями огнестойкости и пожарной опасности строительных конструкций. С. о. з. нормируется с учетом функциональной пожарной опасности, этажности и пл. пожарных отсеков здания, кол-ва эвакуируемых с этажей людей.

Здания (пожарные отсеки) подразделяются на 5 степеней огнестойкости —I , II, III, IV и V со своими нормативными значениями пределов огнестойкости осн. строительных конструкций, а имен-

но: несущих элементов (наруж. и внутр. несущих стен, колонн, связей, диафрагм жёсткости); наружных ненесущих стен; междуэтажных перекрытий (в т. ч. чердачных и над подвалами); элементов бесчердачных покрытий (настилов, ферм, балок, прогонов); внутр. стен лестничных клеток, маршей и площадок лестниц.

Здания 1 и II степени огнестойкости, как правило, здания с несущими и ограждающими конструкциями из бетона, железобетона, естественных или искусственных каменных материалов, с применением листовых и плитных негорючих материалов. Зданиям 1 степени огнестойкости соответствуют самые высокие нормативные значения пределов огнестойкости конструкций, для V С. о. з. пределы огнестойкости конструкций не нормируются.

Лит.: СНиП 21-01-97*. Пожарная безопасность зданий и сооружений; СТ СЭВ 383-87 Пожарная безопасность в строительстве. Термины и определения.

СТЕХИОМЕТРИЯ - исходное соотношение компонентов горючей смеси, при сгорании которой ни один из исходных компонентов не остаётся в избытке в продуктах реакции. Стехиометрическому соответствует оптимальное для горения соотношение компонентов горючей смеси, при котором достигаются максимальные значения характеристик процесса горения: скорости распространения пламени,

температуры горения, скорости нарастания давления взрыва. Стехиометрическое содержание горюче-

го компонента в смеси углеводородов с воздухом рассчитывается по уравнению

Сст = 100 / (1 + 4,84 В), % об.,

где В = Мс + Мн/4 Мо/2 (Мс, Мн, Мо — соответственно число атомов углерода, водорода и кислорода в молекуле горючего компонента.

Лит.: Баратов А.Н., Пчелинцев В.А. Пожарная безопасность. М., 1997

СТРЕЛЬНИКОВ Геннадий Иванович (25 сентября 1938, Москва — 29 августа 1992, Москва), полк. внутр. службы, канд. техн. наук.

Один из ведущих отечественных специалистов в обл. пожарной и охранно-пожарной сигнализа-

ции.

Окончил Московский электротехнический ин-т связи (1961).

С 1964 по 1992 работал в ЦНИИПО (ВНИИПО) МВД СССР, ныне ФГУ ВНИИПО МЧС России. За время работы прошёл ступени от науч. сотрудника до руководителя специального конструкторского бюро (СКБ), ныне НИЦ «Охрана».

Свою н.-и. деятельность посвятил разработке и внедрению техн. средств обеспечения безопасности объектов от преступных проникновений, нештатных ситуаций, в т. ч. при возникновения пожаров.

Лауреат премии Совета Министров СССР, награждён орд. Красной Звезды, знаком «Засл. работник МВД», 6 медалями.

СТРЕЛЬЧУК Николай Антонович (1910, с. Скотиняне, Каменец-Подольский р-н, Хмельницкая обл., Украина — 1988, Москва), инж.-полк. внутр. службы (1947), д-р техн. наук (1954), проф. (1955), дважды лауреат Сталинской премии (1946, 1948).

После окончания Одесского химико-технологического ин-та (1932) работал инж., нач. цеха на заводе в г. Чапаевске Куйбышевской обл.

С 1935 по 1937 работал в Гл. управлении пожарной охраны (ГУПО) НКВД СССР, инспектором, инж. в составе проектного подразделения науч.-техн. бюро (отдела), исполнял обязанности гл. инж. Центральной н.-и. пожарной лаборатории (ЦНИПЛ, 1937). В этом же году он был назначен нач. строительства Центр. НИИ противопожарной обороны (ЦНИИПО) НКВД СССР В период строительства и сдачи отдельных корпусов в эксплуатацию занимал должности гл. инж. (1938), зам. нач. ин-та по материальной (1937), а затем — по науч. и техн. части (1941).

В начале Вел. Отеч. войны С. был командирован в Западную группу войск Московской зоны обороны, где возглавлял хим. службу, сектор взрывных работ

(1941—1942).

Учитывая особую значимость специализации ин-та для условий военного времени, С. был отозван с фронта на место прежней работы и назначен нач.

ЦНИИПО (1942—1952).

За эти годы С. внёс существенный вклад в создание и развитие ин-та, его н.- и., материальнотехн. базы и инфраструктуру, становление основных науч. направлений деятельности, подбор кадров и формирование коллектива учёных.

Званий Лауреата удостаивался за разработку и организацию производства огнетушащих составов новых рецептур (1946, совместно с Корнеевым Ю.Н. и Розенфельдом Л.М.), а также средств их подачи в очаг пожара для тушения легкогорючих (зажигательных) веществ (1948, совместно с Шаровым Н.В.).

Выйдя на пенсию (1952), перешёл в Московский инж.-строительный ин-т (МИСИ, 1952), где вскоре стал ректором (1953—1988). По его инициативе в МИСИ была создана межотраслевая лаборатория взрывобезопасности промзданий и сооружений (1968) при участии Минобразования СССР Миннефтехимпрома СССР и Минхимпрома СССР, а также проблемная лаборатория разрушения строительных конструкций зданий при объёмных взрывах.

Награждён орд. Красной Звезды и 5 медалями.

СУХОТРУБ — незаполненный ОТВ трубопровод, находящийся под атмосферным давлением окружающей среды. Сухотруб состоит из вертикального трубопровода с расположенными на каждом эта-

же противопожарными клапанами. Нижний конец сухотруба с соединительной головкой выводится на высоте 1,35 м наружу из здания. Сухотруб, как правило, применяется в отдельных жилых и общественных зданиях, хотя необходимость его устройства нормативными документами не регламентирована, кроме высотных зданий, где его применение в качестве средства пожаротушения, дублирующего внутренний противопожарный водопровод и автоматические установки пожаротушения, обязательно.

При пожаре к соединительной головке сухотруба подсоединяется пожарный рукав, по которому подается вода от пожарной машины или гидранта. Пожарные поднимаются с рукавной скаткой к пожарному клапану, расположенному в безопасном и наиболее близком к источнику пожара месте, подключают пожарный рукав, соединённый с ручным пожарным стволом, к пожарному клапану, открывают этот клапан и проводят тушение пожара. Сухотруб также иногда применяется в системе внутреннего противопожарного водопровода в помещениях с отрицательной рабочей температурой. Обычно диаметр

сухотруба для жилых и общественных зданий принимают равным 65 мм, для сухотруба высотных зданий — не менее 80 мм.

СУЧКОВ Виктор Петрович (р. 25 декабря 1944, Москва), полк. внутр. службы, д-р техн. наук, доцент, действительный член НАНПБ.

Является признанным специалистом по проблеме обеспечения пожарной безопасности объектов нефтегазового комплекса.

Окончил Ленинградское пожарно-техн. уч-ще (1966), Высш. инж. пожарнотехн. школу МВД СССР (1974), адъюнктуру при ней (1977).

С 1966 по 1970 служил в Московском гарнизоне пожарной охраны. С 1977 г. по настоящее время работает в Акад. МЧС РФ. За время работы прошёл путь от преподавателя до проф.

Свою н. -и. деятельность посвятил моделированию устойчивости к пожару технологий хранения нефтепродуктов, которая впервые позволила теоретически обосновать и экспериментально подтвердить требования пожарной безопасности, обес-

печивающие: взрывобезопасную технологию хранения бензинов в резервуаре с понтоном; дифференцированное нормирование номенклатуры хранимых нефтепродуктов в вертикальных стальных резервуарах; сформулировать принципиально новый подход к оценке пожарной опасности технологии хранения котельных топлив, а также основы огнестойкости резервуаров с нефтепродуктами и нефтями.

Разработанные под его руководством «Рекомендации по обеспечению пожарной безопасности объектов нефтепродуктообеспечения, расположенных на селитебной территории» позволяют решать важную народно-хоз. задачу по обеспечению пожарной безопасности, как самих предприятий по обеспечению нефтепродуктами, так и населения и территории от пожарной опасности предприятий нефтепродуктообеспечения, расположенных в черте городской застройки.

Имеет около 150 публикаций. В числе публикаций 7 монографий, 4 уч. пособия и ряд нормативных документов по пожарной безопасности. Под его руководством защищено три канд. диссертации.

Неоднократный участник Всероссийских и международных конференций по проблемам пожарной безопасности и различных науч.-техн. совещаний, проводимых Министерством по чрезвычайным ситуациям, Ростехнадзором и нефтяными компаниями. Член секции промышленной безопасности Ростехнадзора.

Награждён 11 медалями, знаком «Лучшему работнику пожарной охраны».

СЦЕНАРИЙ ПОЖАРА - описание состояний и фаз пожара в соответствующей временной последовательности. Соответствующая расчётная схема позволяет получать вероятностные оценки как материальных и социальных потерь от пожаров, так и пространственно-временной картины их развития. На основе этого анализа можно определить вероятности времени развития фаз пожара вплоть до его окончания. Вероятности переходов между фазами зависят от надежности (эффективности) выполнения задач локализации и (или) тушения пожара в помещениях здания с помощью тех или иных средств и мер пожарной безопасности.

Лит.: Системный анализ и проблемы пожарной безопасности народного хозяйства / Н.Н. Брушлинский, В.В. Кафидов,

В.И. Козлачков и др.; под ред. Н.Н. Брушлинского. М., 1988.

Т

ТАБЕЛЬ БОЕВОГО РАСЧЁТА - документ, определяющий действия чл. боевого расчёта на пожаре, первоначальные действия по тревоге, обязанности при заступлении на дежурство, место посадки в пожарный автомобиль. Боевой расчёт на пожарные автомобили назначается согласно Т. б. р. Табель вносит опред. порядок и организованность в действия чл. боевого расчёта при выполнении типовых работ на пожаре (прокладке магистральных и рабочих рукавных линий, определении работающих со стволами при подаче одного, двух или неск. стволов, обязанности по работе с лестницами, спасательными приспособлениями и т. д.). В зависимости от полноты укомплектованности боевого расчёта и обстановки на пожаре уточняются обязанности каждого чл. боевого расчёта. Табель д. б. вывешен на видном месте в караульном помещении, гараже, уч. классе или др. помещении. Личный состав караула должен знать обязанности боевого расчёта пожарного автомобиля. Примерный табель основных обязанностей боевого расчёта отделения на автоцистерне в составе 6 чел. приведён в приложении к «Наставлению по пожарно-строевой подготовке».

Лит.: Приказ МВД России от 5 июля 1997 № 257 «Об утверждении нормативных правовых актов в области организации деятельности Государственной противопожарной службы» (с изм. от 6 мая 2000 г.)»; Повзик Я.С., Клюс П.П., Матвейкин А.М. пожарная тактика. М., 1990; Методические рекомендации по пожарно-строевой подготовке. М., 2005.

ТАКТИКО-ТЕХНИЧЕСКОЕ ПОДРАЗДЕЛЕНИЕ ПОЖАРНОИ ОХРАНЫ - караул в составе двух и (или) более отделений на осн. пожарных автомобилях, который способен самостоятельно решать задачи по спасанию людей и тушению пожара. В зависимости от характера объектов, расположенных в охраняемом пожарной командой (частью) р-не (городе), караул м. б. усилен одним или несколькими отделениями на спец. пожарных автомобилях. Отделение на пожарной автоцистерне является первичным Т.-т. п. п. о., обладающим тактическими возможностями, крайне необходимыми для подразделений, прибывающих на пожар первыми, и способным самостоятельно выполнять отд. задачи по спасанию людей, материальных ценностей и тушению пожара. См. также: Пожарный караул, По-

жарная команда (часть), Боевой расчёт пожарного автомобиля.

Лит.: Устав службы пожарной охраны; Пожарная тактика / Под ред. П.Г Демидова, Я С. Повзика. М., 1976; Кимстач И.Ф., Девлишев П.П., Евтюшкин П.М. Пожарная тактика. М., 1984; Методические рекомендации по пожарно-строевой подготовке. М., 2005.

ТАКТИЧЕСКИЕ ВОЗМОЖНОСТИ ПОДРАЗДЕЛЕНИЯ ПОЖАРНОИ ОХРАНЫ - объём боевой работы по спасанию людей, эвакуации имущества и тушению пожара, выполняемой пожарным подразделением за определенный промежуток времени. Тактические возможности пожарных подразделений зависят от мн. факторов, в т. ч. от численности личного состава боевого расчёта, его боевой готовности и обусловлены тактикотехн. характеристиками пожарного автомобиля, на котором данное подразделение прибыло к месту вызова.

ТАМБУР-ШЛЮЗ — один из видов заполнения проёмов в противопожарных преградах (проходное пространство между дверями, служащее для защиты от проникновения холодного воздуха, дыма, при входе в здание, лестничную клетку или др. помещение), к ограждающим конструкциям и заполнениям проёмов которого предъявляются требования по огнестойкости и пожарной опасности.

Лит.: СНиП 2.08.02-89*. Общественные здания й сооружения; СНиП 21-01-97*. Пожарная безопасность зданий и сооружений.

ТАРАНЦЕВ Александр Алексеевич (р. 1954), д-р техн. наук (1977), проф. (2000).

Специалист в обл. автоматизированных систем пожаровзрывобезопасности, информационных технол., теории массового обслуживания.

Окончил Военную инж. Краснознамённую акад. им. А.Ф. Можайского (1977). В ВИПТШ (ныне Акад. МЧС России) с 1995. В настоящее время проф. С. -Петерб. ун-

та МЧС России.

Область науч. интересов: компьютерные методы обработки информации, регрессионный анализ, математическое моделирование (в т. ч. имитационное), методы управления и оптимизации, надёжность и стойкость систем (объектов) в условиях дестабилизирующих внешних воздействий, эвристические решения, теория нечётких множеств, методы классификации.

Т. разработал комплекс компьютерных программ, позволяющих методом форсированного перебора строить адекватные регрессионные модели объектов по результатам активных или пассивных многофакторных испытаний, прогнозировать параметры (состояние) объектов при ожидаемых сценариях функционирования, формировать управляющие воздействия, ранжировать воздействующие факторы по степени значимости (опасности). Сформулировал и доказал теорему о количестве информации, привносимой регрессионной моделью. Предложил методы построения уравнений регрессии при потерях исходной информации и её «зашумлённости». Адаптировал методы регрессионного анализа к отработке нечётких и интервальных исходных данных. Разработал комплекс номограмм для экспрессвыбора параметров специализированных систем массового обслуживания (СМО) при решении задач синтеза. Предложил методы оценки характеристик СМО с учётом ограниченной аппаратной надёжности.

Автор и соавтор более 150 печатных трудов (науч. статьи, тезисы докладов, монография) и свыше 100 изобретений (авторские свидетельства и патенты СССР и РФ).

ТАРАСОВ-АГАЛАКОВ Николай Александрович (1910—1970), полк. внутр. службы, канд. техн. наук, засл. работник МВД.

Один из организаторов профессиональной подготовки кадров высшей квали-

фикации для пожарной охраны.

Окончил МИСИ (1936), в ЦНИИПО НКВД СССР прошёл путь от инженераконстр. до зам. нач. ин-та по науч. работе.

За время работы в ин-те принимал непосредственное участие в становлении и развитии его материально-технической и полигонной базы, новатор науч. направления по противопожарному водоснабжению, разработке насосно-рукавных систем.

С 1948 по 1960 работал в Главном управлении пожарной охраны ГУПО МВД

СССР, зам. нач. и нач. Главка. За этот период ему удалось возобновить издание журнала «Пожарное дело» (1955), став по совместительству его гл. редактором; реализовать идею

противопожарной защиты лесобирж водяными лафетными стволами, установленными на вышках;

восстановить деловые контакты с международными пожарными организациями; решить ряд вопросов по повышению престижа пожарной охраны и развитию противопожарной пропаганды (учреждение медали «За отвагу на пожаре», организация пожарно-техн. выставки в Москве и др.). Однако наибольшей его заслугой явилось восстановление Ф-та инженеров противопожарной техники и безопасности (ФИПТиБ) в составе Высш. школы МВД СССР, который он возглавлял с 1960 по 1964.

В 1964 перешёл в Министерство обороны СССР, где руководил штабом гражданской обороны, вёл большую общественную деятельность: редактировал книги, консультировал проекты, участвовал в конференциях.

ТАТЬЯНИН Александр Петрович (1910—1980, Москва), пожарный московского гарнизона пожарной охраны, своей жизнью и деятельностью повторивший подвиг Героя Советского Союза А. Маресьева.

После демобилизации из рядов Красной Армии (1933) проходил службу в военизированной пожарной части Москвы (ВПч-18) сначала бойцом-пожарным, за тем командиром отделения. В период русско-финской войны добровольцем ушёл на фронт. С 1940 — вновь в рядах пожарной охраны. Вел. Отеч. война застала его курсантом школы мл. начсостава, откуда он добровольцем вошёл в особое подразделение — «пожарную» диверсионную бригаду для решения боевых задач во вражеском тылу на подступах к Москве. В одну из вылазок в суровую зиму в числе ещё пятерых разведчиков попал в засаду, обход которой привёл к обморожению ног и ампутации обеих ступней. Мужество и недюжинная воля позволили Т. обрести умение не только ходить на протезах, но и бегать, выполнять весь арсенал действий, требующихся от пожарного, стать в ряды полноценных оперативных бойцов той же пожарной части, откуда он начал свой трудовой путь.

В пожарной охране прослужил 34 года. За время службы разносторонне проявлял свои дарования. Так, будучи молодым, Т. показал рекордное время (17,3 с) при установке выдвижной лестницы на впервые проводившихся в столице Всесоюзных соревнованиях по пожарно-прикладному спорту (1937); спас от огня 11 человек.

За героические заслуги занесён в Книгу почёта МВД СССР, его бюст установлен в одном из залов Московской пожарно-техн. выставки (ныне — Пожарно-техн. центр — ПТЦ) с надписью А. Маресьева: «В этом человеке-бойце, как и на фронте, проявился русский характер, и его жизнь — действительно подвиг».

ТАУБКИН Соломон Исаакович (30 января 1912, г. Витебск — 25 марта 2007), полк. внутр. служ-

бы.

Основоположник отеч. школы советского периода в обл. огнезащиты и методологии оценки пожарной опасности веществ и материалов различного агрегатного состояния.

Окончил Московский химико-технологический ин-т (МХТИ) — 1935.

До 1939. работал инженером-технологом на заводе в г. Дзержинске, Горьковской обл. С 1939 по 1976 работал в ЦНИИПО (ВНИИПО) на должностях инженера, нач. отделения, нач. отдела.

Под рук. Т. в довоенные годы (1940—1941) разработано и освоено производство средств огнезащиты, в т. ч. красок, обмазок (суперфосфатных, известково - глиносолевых), поверхностных пропиток, сыгравших заметную роль в предотвращении развития по-

жаров, особенно в период Вел. Отеч. войны 1941—1945. Эти средства, будучи нанесёнными на деревянные конструкции, хорошо противостояли действию зажигательных авиабомб и др. источников зажигания, сохраняя защитную эффективность более 10 лет, что зафиксировано, в частности, пожарнотехн. станцией Ленинграда (1953).

В годы войны руководил работами по снижению горючести нитроцеллюлозных покрытий, использовавшихся для лакировки тканевой обивки фюзеляжей ЯК-75 и др. самолетов, по получению трудновоспламеняемых линолеумов и кожзаменителей. В послевоенный период возглавил разработку отеч. теплотражательных костюмов для пожарных, латексированных пожарных рукавов, вспучи-

вающихся покрытий. Заложил науч. основы подхода к созданию средств и методов испытаний (контро-

ля) эффективности средств огнезащиты.

Т. автор более 160 науч. трудов. 12 монографий. Награждён 16 гос. наградами.

ТЕКУЧЕСТЬ ОГНЕТУШАЩИХ ПОРОШКОВ — способность огнетушащего порошка обес-

печивать массовый расход через данное сечение в ед. времени под воздействием давления выталкивающего газа. Текучесть порошка напрямую влияет на огнетушащую способность. Огнетушащий порошок подавляет процесс горения за счёт создания огнетушащей концентрации в объёме пламени. При этом часть порошка оседает, а часть уносится конвективными потоками продуктов горения, что требует поддержания достаточно высокой массовой скорости подачи порошка (текучести). Текучесть порошка зависит от его дисперсности. Чем мельче порошок, тем хуже его текучесть. для улучшения текучести порошка используют различные технологические добавки: тонкоизмельчённые алюмосиликаты, модифицированный кремнезём и др.

Лит.: ГОСТ 4.107-83. СПКП. Порошки огнетушащие. Номенклатура показателей.

ТЕЛЯТНИКОВ Леонид Петрович (1951, с. Введенка, Боровский р-н, Кустанайская обл.— декабрь 2005), ген.-м. внутр. службы, Гёрой Советского Союза (1986).

В 1971 окончил Свердловское пожарно-техн. уч-ще, в 1978 — Высш. инж. пожарно-техн. школу (ВИПТШ, ныне Акад. ГПС). После учёбы работал в Казахстане. В 1982 переведён в г. Чернобыль назначен нач. военизированной пожарной части (ВПЧ № 2) по охране АЭС. Авария произошла во время его отпуска, однако на место пожара Т. прибыл через 15 мин после взрыва на 4-м энергоблоке. Проявив высокое проф. мастерство, правильно определил решающее направление борьбы с огнём, оперативно создал боевые участки и, пренебрегая реальной опасностью, в условиях высокой температуры и радиации руководил работой пожарных на самых сложных участках. Личным примером, мужественными, героическими действиями воодушевлял сотрудников подразделений пожарной охраны на самоотверженное выполнение боевой задачи. Получил высокую дозу радиоактивного облучения. Находился на лечении в специальной клинике Москвы.

После выздоровления работал в Киевском обл. Управлении пожарной охраны нач. сектора испытательной пожарной лаборатории, впоследствии был назначен зам. нач. Управления пожарной охраны Украины (до 2000).

Лит.: Одинец М.С., Чернобыль: дни испытаний, М., 1988.

ТЕМПЕРАТУРА ВОСПЛАМЕНЕНИЯ - наименьшая температура, при которой в условиях спец. испытаний вещество (материал) выделяет горючие пары (газы) со скоростью, достаточной, чтобы при воздействии источника зажигания возникло воспламенение и затем устойчивое горение.

Значение Т. в. позволяет определять пожаровзрывобезопасные условия проведения технологических процессов.

Лит.: ГОСТ 12.1.044-89. ССБТ. Пожаровзрывоопасность вещества и материалов. Номенклатура показателей и методы их определения.

ТЕМПЕРАТУРА ВСПЫШКИ — самая низкая в условиях спец. испытаний температура ГЖ, при которой над её поверхностью образуются пары (газы), способные к вспышке от источника зажигания. При нагреве до Т. в. устойчивое горение из-за недостаточной интенсивности испарения жидкости не достигается.

Т. в. определяют по двум методикам: в открытом тигле и в закрытом тигле. Т. в. в открытом тигле всегда выше, чем в закрытом тигле. Она ниже температуры воспламенения и температуры самовос-

пламенения. Негорючие жидкости Т. в. не имеют.

Т. в. относится к показателям пожаровзрывоопасности веществ и материалов. Будучи опред. по стандартному методу, она используется в целях обеспечения пожарной безопасности технологических процессов.

Лит.: ГОСТ 12.1.044-89. ССБТ. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения.

ТЕМПЕРАТУРА ВСПЫШКИ В ЗАКРЫТОМ И ОТКРЫТОМ ТИГЛЯХ - самая низкая (в ус-

ловиях специальных испытаний) температура горючего вещества, при которой над его поверхностью образуются пары и газы, способные вспыхивать от источника зажигания, но скорость их образования ещё недостаточна для последующего горения. Температура вспышки в закрытом и открытом тиглях ориентировочно характеризует температурные условия, при которых горючее вещество становится огнеопасным или в закрытом сосуде, или в открытом сосуде, или при разливе. Температура вспышки в закрытом и открытом тиглях относится к показателям взрывопожарной и пожарной опасности веществ и материалов, которые, будучи определенные по стандартному методу, используются при разра-

ботке мероприятий по обеспечению пожарной безопасности.

Лит.: ГОСТ 12.1.044-89. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения.

ТЕМПЕРАТУРА ГОРЕНИЯ - температура, до которой нагреваются продукты горения. Различают адиабатическую и действительную Т. г. Первая Т. г. — расчётная (не учитывается теплообмен с окружающей средой) и используется при моделировании пожаров, а вторая — температура, до которой нагреваются продукты горения в реальных условиях.

Адиабатическая Т. г. — температура нагрева продуктов горения при учёте состава горючей смеси (коэф. избытка воздуха 1) и учитывающая частичный расход тепловыделения при горении на диссоциацию продуктов сгорания. Однако их существенная диссоциация начинается при температурах св. 2000 К. Такие высокие температуры на реальных пожарах не реализуются, поэтому потери на диссоциацию не учитываются.

Действительной Т. г. отвечает учёт всевозможных энергетических потерь: на неполноту сгорания (25—30%) и на излучение (30—40%) от суммарного кол-ва тепла, выделяющегося при горении. В конечном итоге действительная Т. г. на пожаре составляет от 1300 до 1400 К.

Лит.: Зельдович Я.Б., Баренблатт Г.И., Либрович В.Б. и др. Математическая теория горения и взрыва. М., 1980; Баратов А.Н. Горение — Пожар — Взрыв — Безопасность. М., 2003.

ТЕМПЕРАТУРА ПЛАМЕНИ - макс. температура, которая достигается в зоне химического превращения исходной горючей смеси в продукты горения. Как правило, Т. п. соответствует светящейся зоне, в которой происходит осн. тепловыделение, создающее пожарную нагрузку при пожаре и взрывную нагрузку при взрыве. Световое и тепловое излучение осуществляют углесодержащие возбуждённые частицы. Существует температурная граница горячего светящегося пламени, которая для углеводородного пламени составляет 1500 К, а для водородного — около 1000 К. Т. п. определяет возможность распространения пламени по горючей смеси, а также величину энерговыделения в зоне химической реакции. В случае диффузионных пламён различают неск. обл. пламени с разл. температурой. В этом случае Т. п. считается температура верхней части диффузионного факела пламени, т. к. в этой обл. происходит полное превращение (окисление и разложение) исходного горючего, сопровождающееся интенсивным тепловыделением.

Лит.: Баратов А.Н., Иванов Е.Н. Пожаротушение на предприятиях химической и нефтеперерабатывающей промышленности, М., 1979; Таубкин С.И. Пожар и взрыв, особенности их экспертизы. М., 1999.

ТЕМПЕРАТУРА САМОВОЗГОРАНИЯ - температура, при которой в технологических процессах, при хранении и транспортировании материалов, в зависимости от их физико-химических свойств и размеров, а также условий тепломассообмена возможно самовозгорание материала. В зависимости от свойств окисляющихся материалов самовозгорание может проявляться в виде тления или пламенного горения. В этих случаях Т. с. называется температурой тления или температурой самовоспламенения.

Лит.: Таубкин С.И., Баратов А.Н., Никитина Н.С. Справочник пожароопасности твёрдых веществ и материалов. М., 1961; Вогман Л.П., Горшков В.И., Дегтярёв А.Г. Пожарная безопасность элеваторов. М., 1993; Горшков В.И. Самовозгорание веществ в материалов. М., 2003.

ТЕМПЕРАТУРА САМОВОСПЛАМЕНЕНИЯ - наименьшая температура окружающей среды, при которой в условиях спец. испытаний наблюдается самовоспламенение вещества.

Т. с., не являясь пост., зависит от метода определения и параметров состояния. Будучи опред. по стандартному методу, она позволяет ранжировать вещества при: определении группы взрывоопасной смеси; выборе типа взрывозащищённого электрооборудования; разработке мероприятий по обеспечению пожаровзрывобезопасности технологических процессов.

Лит.: ГОСТ 12.1.044-89. ССБТ. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения.

ТЕМПЕРАТУРА ТЛЕНИЯ- миним. значение температуры твердого горючего вещества (мате-

риала), при которой возникает тление (при нагревании вещества с достижением Т. т. «снизу») либо остаточное тление (при прекращении пламенного горения вещества или удалении внеш. источника зажигания с достижением Т. т. «сверху»). Примеры значений Т. т. для: помола пшеницы со ср. размером частиц 80 мкм составляет 290 °С; комбикорма со ср. размером частиц 250 мкм — 355 °С и со средним размером частиц 125 мкм — 265 °С; кукурузы со ср. размером частиц 1450 мкм — 460 ОС; хлопка — 205 °С; древесины(сосна) — 295 °С.

Значение Т. т. применяют для установления причины пожара, разработки мер пожарной безопасности технологических процессов, оценки пожарной опасности веществ (материалов). Метод определения Т. т. стандартизован и заключается в термостатировании иссл. вещества (материала) в сосуде при обдуве воздухом с визуальной оценкой результатов испытаний. Изменяя температуру в процессе испытаний, находят её миним. значение, при котором наблюдается тление вещества (материала).

Лит.: ГОСТ 12.1.044-89. ССБТ. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения.

ТЕМПЕРАТУРНЫЕ ПРЕДЕЛЫ РАСПРОСТРАНЕНИЯ ПЛАМЕНИ (ТПР) - температуры,

при которых насыщенные пары веществ образуют в окислительной среде концентрации, равные ниж-

нему (НТП) и верхнему (ВТП) концентрационным пределам распространения пламени соответственно.

Значения ТПР используются при: расчётах пожаровзрывобезопасных температурных режимов работы технологического оборудования; разработке мероприятий по обеспечению пожаровзрывобезопасности объекта и др.

Лит.: ГОСТ 12.1.044-89. ССБТ. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения.

ТЕМПЕРАТУРНЫЙ РЕЖИМ ПРИ ПОЖАРЕ - распределение температуры на разл. стадиях развития пожара (см. Стадии свободного развитая пожара). Пространство, в котором развивается пожар, условно подразделяется на три зоны: горения, теплового воздействия и задымления.

Зоной горения является часть пространства, в котором существует очаг пожара и происходит его развитие. Горение на пожаре м. б. пламенным (в виде диффузионного факела) и беспламенным. При пламенном горении границами зоны горения являются поверхность горящего материала и тонкий светящийся слой пламени (зона реакции окисления — восстановления), при беспламенном горении — раскалённая поверхность горящего вещества. Примером беспламенного горения может служить горение кокса, древесного угля, тление (напр., войлока, торфа, хлопка и т. д).

Зона теплового воздействия примыкает к границам зоны горения. В этой части пространства протекают процессы теплообмена между поверхностью пламени, окружающими ограждающими конструкциями и горючими материалами. Границы зоны проходят там, где тепловое воздействие приводит к заметному изм. состояния материалов, конструкций и создаёт невозможные условия для пребывания людей без тепловой защиты.