Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 Понятие функции одной переменной Рассмот....docx
Скачиваний:
34
Добавлен:
25.12.2018
Размер:
390.74 Кб
Скачать

17. Первый достаточный признак экстремума

Для нахождения максимумов и минимумов функции можно пользоваться любым из трех достаточных признаков экстремума. Хотя самым распространенным и удобным является первый из них.

если в точке функция непрерывна и в ней производная меняет знак с плюса на минус, то - точка максимума; -если в точке функция непрерывна и в ней производная меняет знак с минуса на плюс, то - точка минимума.

Теорема 3. (первый достаточный признак экстремума). Если производная f '(x) функции f(x) обращается в нуль в точке x0 или не существует и при переходе через x0 меняет свой знак, то функция f(x) имеет в этой точке экстремум (максимум, если знак меняется с "+" на "-", и минимум, если знак меняется с "-" на "+").    Доказательство. Если производная f '(x) при переходе через x = x0 меняет знак с "+" на "-", то это означает, что при достаточно малом h производнаяf '(x) положительна в интервале (x0 - h, x0 ) и отрицательна в интервале (x0 , x0 + h). Следовательно, функция f(x) в интервале (x0 - h, x0 )возрастает, а в интервале (x0 , x0 + h) убывает, то есть в точке x0 достигает максимума.    Аналогично доказывается утверждение данной теоремы относительно минимума функции.    Заметим, что если производная f '(x), обращаясь в нуль в точке x0, не меняет знака, то в этой точке функция не имеет экстремума, так как с обеих сторон от точки x0 функция f(x) будет возрастать или убывать. 

   Теорема 4. (второй достаточный признак существования экстремума функции). Если в точке x0 первая производная f '(x) функции f(x) обращается в нуль, а её вторая производная f ''(x) отлична от нуля, то в точке x0 функция f(x) достигает экстремума (минимума, если f ''(x) > 0, и максимума, еслиf ''(x) < 0). Предполагается, что f ''(x) непрерывна в точке x0 и ее окрестности.

18. Определение выпуклости вверх(вниз)

График функции y=f(x) называется выпуклым на интервале (a; b), если он расположен ниже любой своей касательной на этом интервале. График функции y=f(x) называется вогнутым на интервале (a; b), если он расположен выше любой своей касательной на этом интервале. Рассмотрим достаточный признак, позволяющий установить, будет ли график функции в данном интервале выпуклым или вогнутым.

Теорема. Пусть y=f(x) дифференцируема на (a; b). Если во всех точках интервала (a; b) вторая производная функции y = f(x) отрицательная, т.е. f''(x) < 0, то график функции на этом интервале выпуклый, если же f''(x) > 0 – вогнутый.

Доказательство. Предположим для определенности, что f''(x) < 0 и докажем, что график функции будет выпуклым.

Возьмем на графике функции y = f(x) произвольную точку M0 с абсциссой x0  (ab) и проведем через точку M0 касательную. Ее уравнение . Мы должны показать, что график функции на (a; b) лежит ниже этой касательной, т.е. при одном и том же значении xордината кривой y = f(x) будет меньше ордината касательной.

Итак, уравнение кривой имеет вид y = f(x). Обозначим  ординату касательной, соответствующую абсциссе x. Тогда . Следовательно, разность ординат кривой и касательной при одном и том же значении x будет .

Разность f(x) – f(x0) преобразуем по теореме Лагранжа , где c между x и x0.

Таким образом,

.

К выражению, стоящему в квадратных скобках снова применим теорему Лагранжа: , где c1 между c0 и x0. По условию теоремы f ''(x) < 0. Определим знак произведения второго и третьего сомножителей.

  1. Предположим, что x>x0. Тогда x0<c1<c<x, следовательно,  (x – x0) > 0 и (c – x0) > 0.

  2. Пусть x<x0, следовательно, x < c < c1 < x0 и (x – x0) < 0, (c – x0) < 0. Таким образом, любая точка кривой лежит ниже касательной к кривой при всех значениях x и x0  (ab), а это значит, что кривая выпукла.