Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 Понятие функции одной переменной Рассмот....docx
Скачиваний:
34
Добавлен:
25.12.2018
Размер:
390.74 Кб
Скачать

15 Определение монотонно возрастающей(убывающей) функции на интервале

Если функция возрастает или убывает на некотором промежутке, то она называется монотонной на этом промежутке.

Заметим, что если f – монотонная функция на промежутке D (f (x)), то уравнение f (x) = const не может иметь более одного корня на этом промежутке.

Действительно, если x1 < x2 – корни этого уравнения на промежутке D (f(x)), то f (x1) = f (x2) = 0, что противоречит условию монотонности.

Функция f (x) называется возрастающей на промежутке D, если для любых чисел x1 и x2 из промежутка D таких, что x1 < x2, выполняется неравенство f (x1) < f (x2).

Функция f (x) называется убывающей на промежутке D, если для любых чисел x1 и x2 из промежутка D таких, что x1 < x2, выполняется неравенство f (x1) > f (x2).

Достаточный признак возрастания функцииЕсли f’(х) > 0 в каждой точке интервала I, то функция f возрастает на I. Достаточный признак убывания функцииЕсли f’(х) < 0 в каждой точке интервала I, то функция f убывает на I. Доказательство этих признаков проводится на основании формулы Лагранжа (см. п. 19). Возьмем два любых числа х1 и x2 из интервала. Пусть x1<x2. По формуле Лагранжа существует число с∈(х1, x2), такое, что

 (1)

Число с принадлежит интервалу I, так как точки х1 и x2 принадлежат I. Если f'(x)>0 для х∈I то f’(с)>0, и поэтому F(x1)<F(x2) — это следует из формулы (1), так как x2 — x1>0. Этим доказано возрастание функции f на I. Если же f’ (x)<0 для х∈I то f'(с)<0, и потому f(x1)>f (х2) — следует из формулы (1), так как x2—x1>0. Доказано убывание функции f на I.  Наглядный смысл признаков ясен из физических рассуждений (рассмотрим для определенности признак возрастания).  Пусть движущаяся по оси ординат точка в момент времени t имеет ординату y = f(t). Тогда скорость этой точки в момент времени t равна f'(t) (см. Мгновенная скорость). Если f’ (t)>0 в каждый момент времени из промежутка t, то точка движется в положительном направлении оси ординат, т. е. если t1 <t2, то f (t1)<f (t2). Это означает, что функция f возрастает на промежутке I.

16. Определение точки максимума(минимума) функции

Точка x0 называется точкой минимума функции f, если для всех x из некоторой окрестности x0 выполняется неравенство f(x) ≥ f(x0  Точка x0 называется точкой максимума функции f, если для всех x из некоторой окрестности x0 выполняется неравенство f(x) ≤ f(x0 По определению значение функции f в точке x0 является наибольшим среди значений функции в окрестности этой точки, поэтому график функции в окрестности x0 имеет обычно либо вид гладкого холма, либо вид острого пика.  В окрестности точки минимума графики изображаются в виде загругленной или острой впадины

Пусть функция  определена в некоторой окрестности , некоторой точки  своей области определения. Точка  называется точкой локального максимума, если в некоторой такой окрестности  выполняется неравенство  ( ), и точкой локального минимума, если  .     

Понятия локальный максимум и локальный минимум объединяются термином локальный экстремум.

Следующая теорема даёт необходимое условие того, чтобы точка  была точкой локального экстремума функции .

        Теорема 7.4   Если точка  -- это точка локального экстремума функции , и существует производная в этой точке , то .

Доказательство этой теоремы сразу же следует из теоремы Ферма (см. гл. 5).    

Утверждение теоремы можно переформулировать так:

если функция  имеет локальный экстремум в точке , то либо  1) , либо  2) производная  не существует.

Точка  называется критической точкой функции , если  непрерывна в этой точке и либо , либо  не существует. В первом случае (то есть при ) точка называется также стационарной точкой функции .

Итак, локальный экстремум функции  может наблюдаться лишь в одной из критических точек этой функции.